{"title":"关于在无h和满h数中具有给定倍数的质因数个数","authors":"Sourabhashis Das, Wentang Kuo, Yu-Ru Liu","doi":"10.1016/j.jnt.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> and <em>n</em> be natural numbers. Let <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of distinct prime factors of <em>n</em> with multiplicity <em>k</em> as studied by Elma and the third author <span><span>[5]</span></span>. We obtain asymptotic estimates for the first and the second moments of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> when restricted to the set of <em>h</em>-free and <em>h</em>-full numbers. We prove that <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> has normal order <span><math><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></math></span> over <em>h</em>-free numbers, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> has normal order <span><math><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></math></span> over <em>h</em>-full numbers, and both of them satisfy the Erdős-Kac Theorem. Finally, we prove that the functions <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>k</mi><mo><</mo><mi>h</mi></math></span> do not have normal order over <em>h</em>-free numbers and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with <span><math><mi>k</mi><mo>></mo><mi>h</mi></math></span> do not have normal order over <em>h</em>-full numbers.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 176-201"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of prime factors with a given multiplicity over h-free and h-full numbers\",\"authors\":\"Sourabhashis Das, Wentang Kuo, Yu-Ru Liu\",\"doi\":\"10.1016/j.jnt.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> and <em>n</em> be natural numbers. Let <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of distinct prime factors of <em>n</em> with multiplicity <em>k</em> as studied by Elma and the third author <span><span>[5]</span></span>. We obtain asymptotic estimates for the first and the second moments of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> when restricted to the set of <em>h</em>-free and <em>h</em>-full numbers. We prove that <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> has normal order <span><math><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></math></span> over <em>h</em>-free numbers, <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> has normal order <span><math><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></math></span> over <em>h</em>-full numbers, and both of them satisfy the Erdős-Kac Theorem. Finally, we prove that the functions <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>k</mi><mo><</mo><mi>h</mi></math></span> do not have normal order over <em>h</em>-free numbers and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with <span><math><mi>k</mi><mo>></mo><mi>h</mi></math></span> do not have normal order over <em>h</em>-full numbers.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"267 \",\"pages\":\"Pages 176-201\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X2400194X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2400194X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 k 和 n 都是自然数。让 ωk(n)表示乘数为 k 的 n 的不同质因数的个数,如 Elma 和第三作者所研究的那样[5]。我们得到了ωk(n)的第一矩和第二矩的渐近估计值,并将其限制在无 h 和满 h 的数集合中。我们证明ω1(n) 在 h 个无穷数上有正序 loglogn,ωh(n) 在 h 个满数上有正序 loglogn,而且它们都满足厄尔多斯-卡克定理。最后,我们证明含 1<k<h 的函数 ωk(n) 在无 h 数上没有正序,含 k>h 的函数 ωk(n) 在满 h 数上没有正序。
On the number of prime factors with a given multiplicity over h-free and h-full numbers
Let k and n be natural numbers. Let denote the number of distinct prime factors of n with multiplicity k as studied by Elma and the third author [5]. We obtain asymptotic estimates for the first and the second moments of when restricted to the set of h-free and h-full numbers. We prove that has normal order over h-free numbers, has normal order over h-full numbers, and both of them satisfy the Erdős-Kac Theorem. Finally, we prove that the functions with do not have normal order over h-free numbers and with do not have normal order over h-full numbers.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.