{"title":"带挤压膜阻尼的微机电系统模型周期解的分岔与动力学","authors":"Shiping Lu , Xingchen Yu , Zhuomo An","doi":"10.1016/j.nonrwa.2024.104229","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap <span><math><mi>d</mi></math></span>: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient <span><math><mrow><mi>k</mi><mo>></mo><mn>0</mn></mrow></math></span>. The oscillation, under the influence of AC–DC voltage <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>cos</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>T</mi></mrow></mfrac><mi>t</mi></mrow></math></span>, is ruled by the following singular differential equation <span><span><span><math><mrow><mi>m</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>A</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>y</mi></mrow></mfrac></mrow><mo>]</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>A</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mi>y</mi></math></span> is the vertical displacement of the moving plate (<span><math><mi>y</mi></math></span> is always assumed to be less than <span><math><mi>d</mi></math></span>), <span><math><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow></math></span> is its mass, <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> is the electrode area, and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> is the absolute dielectric constant of vacuum. Taking <span><math><mi>d</mi></math></span> as the parameter, we show the existence of saddle–node bifurcation of <span><math><mi>T</mi></math></span>-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of <span><math><mi>T</mi></math></span>-periodic solutions: as <span><math><mi>d</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, one of them uniformly tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span> at the rate of <span><math><mi>d</mi></math></span>, while the minimum values of the second class tend to, or cross, 0.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping\",\"authors\":\"Shiping Lu , Xingchen Yu , Zhuomo An\",\"doi\":\"10.1016/j.nonrwa.2024.104229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap <span><math><mi>d</mi></math></span>: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient <span><math><mrow><mi>k</mi><mo>></mo><mn>0</mn></mrow></math></span>. The oscillation, under the influence of AC–DC voltage <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>cos</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>T</mi></mrow></mfrac><mi>t</mi></mrow></math></span>, is ruled by the following singular differential equation <span><span><span><math><mrow><mi>m</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>A</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>y</mi></mrow></mfrac></mrow><mo>]</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>A</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mi>y</mi></math></span> is the vertical displacement of the moving plate (<span><math><mi>y</mi></math></span> is always assumed to be less than <span><math><mi>d</mi></math></span>), <span><math><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow></math></span> is its mass, <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> is the electrode area, and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> is the absolute dielectric constant of vacuum. Taking <span><math><mi>d</mi></math></span> as the parameter, we show the existence of saddle–node bifurcation of <span><math><mi>T</mi></math></span>-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of <span><math><mi>T</mi></math></span>-periodic solutions: as <span><math><mi>d</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, one of them uniformly tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span> at the rate of <span><math><mi>d</mi></math></span>, while the minimum values of the second class tend to, or cross, 0.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001688\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001688","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了具有挤压膜阻尼的微机电系统(MEMS)理想化质量弹簧模型的振荡。该模型由两个平行电极组成,两电极之间有间隙 d:其中一个固定,另一个可移动,并连接到刚度系数为 k>0 的线性弹簧上。在交直流电压 V(t)=vdc+vaccos2πTt 的影响下,振荡受以下奇异微分方程 my′′+[A(d-y)3+Ad-y]y′+ky=θ0A2V2(t)(d-y)2 的支配。这里,y 是移动板的垂直位移(y 始终假定小于 d),m>0 是移动板的质量,A>0 是电极面积,θ0>0 是真空的绝对介电常数。以 d 为参数,我们证明了方程在参数空间中存在 T 周期解的鞍节点分岔。这从某种角度回答了托雷斯在其专著中提出的开放问题,见托雷斯(2015,开放问题 2.1,第 18 页)。此外,我们还证明了方程正好有两类 T 周期解:当 d 趋于 +∞ 时,其中一类以 d 的速率均匀地趋于 +∞,而第二类的最小值趋于或越过 0。
Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping
In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap : one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient . The oscillation, under the influence of AC–DC voltage , is ruled by the following singular differential equation Here, is the vertical displacement of the moving plate ( is always assumed to be less than ), is its mass, is the electrode area, and is the absolute dielectric constant of vacuum. Taking as the parameter, we show the existence of saddle–node bifurcation of -periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of -periodic solutions: as tends to , one of them uniformly tends to at the rate of , while the minimum values of the second class tend to, or cross, 0.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.