带挤压膜阻尼的微机电系统模型周期解的分岔与动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiping Lu , Xingchen Yu , Zhuomo An
{"title":"带挤压膜阻尼的微机电系统模型周期解的分岔与动力学","authors":"Shiping Lu ,&nbsp;Xingchen Yu ,&nbsp;Zhuomo An","doi":"10.1016/j.nonrwa.2024.104229","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap <span><math><mi>d</mi></math></span>: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The oscillation, under the influence of AC–DC voltage <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>cos</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>T</mi></mrow></mfrac><mi>t</mi></mrow></math></span>, is ruled by the following singular differential equation <span><span><span><math><mrow><mi>m</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>A</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>y</mi></mrow></mfrac></mrow><mo>]</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>A</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mi>y</mi></math></span> is the vertical displacement of the moving plate (<span><math><mi>y</mi></math></span> is always assumed to be less than <span><math><mi>d</mi></math></span>), <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is its mass, <span><math><mrow><mi>A</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is the electrode area, and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> is the absolute dielectric constant of vacuum. Taking <span><math><mi>d</mi></math></span> as the parameter, we show the existence of saddle–node bifurcation of <span><math><mi>T</mi></math></span>-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of <span><math><mi>T</mi></math></span>-periodic solutions: as <span><math><mi>d</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, one of them uniformly tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span> at the rate of <span><math><mi>d</mi></math></span>, while the minimum values of the second class tend to, or cross, 0.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping\",\"authors\":\"Shiping Lu ,&nbsp;Xingchen Yu ,&nbsp;Zhuomo An\",\"doi\":\"10.1016/j.nonrwa.2024.104229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap <span><math><mi>d</mi></math></span>: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The oscillation, under the influence of AC–DC voltage <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>cos</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>T</mi></mrow></mfrac><mi>t</mi></mrow></math></span>, is ruled by the following singular differential equation <span><span><span><math><mrow><mi>m</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>A</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>y</mi></mrow></mfrac></mrow><mo>]</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>A</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mi>y</mi></math></span> is the vertical displacement of the moving plate (<span><math><mi>y</mi></math></span> is always assumed to be less than <span><math><mi>d</mi></math></span>), <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is its mass, <span><math><mrow><mi>A</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is the electrode area, and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> is the absolute dielectric constant of vacuum. Taking <span><math><mi>d</mi></math></span> as the parameter, we show the existence of saddle–node bifurcation of <span><math><mi>T</mi></math></span>-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of <span><math><mi>T</mi></math></span>-periodic solutions: as <span><math><mi>d</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, one of them uniformly tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span> at the rate of <span><math><mi>d</mi></math></span>, while the minimum values of the second class tend to, or cross, 0.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001688\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001688","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有挤压膜阻尼的微机电系统(MEMS)理想化质量弹簧模型的振荡。该模型由两个平行电极组成,两电极之间有间隙 d:其中一个固定,另一个可移动,并连接到刚度系数为 k>0 的线性弹簧上。在交直流电压 V(t)=vdc+vaccos2πTt 的影响下,振荡受以下奇异微分方程 my′′+[A(d-y)3+Ad-y]y′+ky=θ0A2V2(t)(d-y)2 的支配。这里,y 是移动板的垂直位移(y 始终假定小于 d),m>0 是移动板的质量,A>0 是电极面积,θ0>0 是真空的绝对介电常数。以 d 为参数,我们证明了方程在参数空间中存在 T 周期解的鞍节点分岔。这从某种角度回答了托雷斯在其专著中提出的开放问题,见托雷斯(2015,开放问题 2.1,第 18 页)。此外,我们还证明了方程正好有两类 T 周期解:当 d 趋于 +∞ 时,其中一类以 d 的速率均匀地趋于 +∞,而第二类的最小值趋于或越过 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping
In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap d: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient k>0. The oscillation, under the influence of AC–DC voltage V(t)=vdc+vaccos2πTt, is ruled by the following singular differential equation my+[A(dy)3+Ady]y+ky=θ0A2V2(t)(dy)2.Here, y is the vertical displacement of the moving plate (y is always assumed to be less than d), m>0 is its mass, A>0 is the electrode area, and θ0>0 is the absolute dielectric constant of vacuum. Taking d as the parameter, we show the existence of saddle–node bifurcation of T-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of T-periodic solutions: as d tends to +, one of them uniformly tends to + at the rate of d, while the minimum values of the second class tend to, or cross, 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信