最大弹性二次场

IF 0.6 3区 数学 Q3 MATHEMATICS
Paul Pollack
{"title":"最大弹性二次场","authors":"Paul Pollack","doi":"10.1016/j.jnt.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Recall that for a domain <em>R</em> where every nonzero nonunit factors into irreducibles, the <span>elasticity</span> of <em>R</em> is defined as<span><span><span><math><mi>sup</mi><mo>⁡</mo><mrow><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></mfrac><mo>:</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mrow><mtext> with all </mtext><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>j</mi></mrow></msub><mtext> irreducible</mtext></mrow><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We call a quadratic field <em>K</em> <span>maximally elastic</span> if the ring of integers of <em>K</em> is a UFD and each element of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>}</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> appears as an elasticity of infinitely many orders inside <em>K</em>. This corresponds to the orders in <em>K</em> exhibiting, to the extent possible for a quadratic field, maximal variation in terms of the failure of unique factorization. Assuming the Generalized Riemann Hypothesis, we prove that <span><math><mi>K</mi><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span> is universally elastic, and we provide evidence for a conjectured characterization of maximally elastic quadratic fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 80-100"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximally elastic quadratic fields\",\"authors\":\"Paul Pollack\",\"doi\":\"10.1016/j.jnt.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recall that for a domain <em>R</em> where every nonzero nonunit factors into irreducibles, the <span>elasticity</span> of <em>R</em> is defined as<span><span><span><math><mi>sup</mi><mo>⁡</mo><mrow><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></mfrac><mo>:</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mrow><mtext> with all </mtext><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>j</mi></mrow></msub><mtext> irreducible</mtext></mrow><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We call a quadratic field <em>K</em> <span>maximally elastic</span> if the ring of integers of <em>K</em> is a UFD and each element of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>}</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> appears as an elasticity of infinitely many orders inside <em>K</em>. This corresponds to the orders in <em>K</em> exhibiting, to the extent possible for a quadratic field, maximal variation in terms of the failure of unique factorization. Assuming the Generalized Riemann Hypothesis, we prove that <span><math><mi>K</mi><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span> is universally elastic, and we provide evidence for a conjectured characterization of maximally elastic quadratic fields.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"267 \",\"pages\":\"Pages 80-100\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001902\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001902","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

回想一下,对于每个非零非单元都因数化为不可还原单元的域 R,R 的弹性定义如下{sr:π1⋯πr=ρ1⋯ρs,所有 πi,ρj 都不可还原}。如果 K 的整数环是 UFD,且{1,32,2,52,3,...}∪{∞}中的每个元素在 K 中作为无穷多阶的弹性出现,我们就称一个二次域 K 为最大弹性域。假设广义黎曼假说成立,我们证明 K=Q(2) 具有普遍弹性,并为最大弹性二次域的猜想特征提供证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximally elastic quadratic fields
Recall that for a domain R where every nonzero nonunit factors into irreducibles, the elasticity of R is defined assup{sr:π1πr=ρ1ρs, with all πi,ρj irreducible}. We call a quadratic field K maximally elastic if the ring of integers of K is a UFD and each element of {1,32,2,52,3,}{} appears as an elasticity of infinitely many orders inside K. This corresponds to the orders in K exhibiting, to the extent possible for a quadratic field, maximal variation in terms of the failure of unique factorization. Assuming the Generalized Riemann Hypothesis, we prove that K=Q(2) is universally elastic, and we provide evidence for a conjectured characterization of maximally elastic quadratic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信