{"title":"双磷酸盐抑制剂 1-羟基丙烷-1,1-二膦酸对富白云石菱镁矿浮选脱钙的影响和机理","authors":"Wengang Liu, Xudong Chen, Wenbao Liu, Naixu Zhang, Yong Mao, Ying Guo","doi":"10.1016/j.ijmst.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials, the separation and utilization of high-calcium magnesite ores have become essential. However, the similar surface properties and solubility of semi-soluble salt-type minerals, pose significant challenges for the utilization of dolomite-rich magnesite resources. In this study, 1-hydroxypropane-1,1-diphosphonic acid (HPDP) was identified for the first time as a high-performance depressant for dolomite. Various tests, including contact angle measurements, ζ potential analysis, X-ray photoelectron spectroscopy, and atomic force microscopy, were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales. Additionally, molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals. It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate, ensuring that the dolomite surface remained hydrophilic and sank. Moreover, it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution. These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 7","pages":"Pages 1017-1032"},"PeriodicalIF":11.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact and mechanism of bisphosphonate depressant 1-hydroxypropane-1,1-diphosphonic acid on flotation decalcification of dolomite-rich magnesite ore\",\"authors\":\"Wengang Liu, Xudong Chen, Wenbao Liu, Naixu Zhang, Yong Mao, Ying Guo\",\"doi\":\"10.1016/j.ijmst.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials, the separation and utilization of high-calcium magnesite ores have become essential. However, the similar surface properties and solubility of semi-soluble salt-type minerals, pose significant challenges for the utilization of dolomite-rich magnesite resources. In this study, 1-hydroxypropane-1,1-diphosphonic acid (HPDP) was identified for the first time as a high-performance depressant for dolomite. Various tests, including contact angle measurements, ζ potential analysis, X-ray photoelectron spectroscopy, and atomic force microscopy, were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales. Additionally, molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals. It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate, ensuring that the dolomite surface remained hydrophilic and sank. Moreover, it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution. These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 7\",\"pages\":\"Pages 1017-1032\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000855\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624000855","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Impact and mechanism of bisphosphonate depressant 1-hydroxypropane-1,1-diphosphonic acid on flotation decalcification of dolomite-rich magnesite ore
Given the depletion of high-quality magnesite deposits and the rising demand for high-end magnesium materials, the separation and utilization of high-calcium magnesite ores have become essential. However, the similar surface properties and solubility of semi-soluble salt-type minerals, pose significant challenges for the utilization of dolomite-rich magnesite resources. In this study, 1-hydroxypropane-1,1-diphosphonic acid (HPDP) was identified for the first time as a high-performance depressant for dolomite. Various tests, including contact angle measurements, ζ potential analysis, X-ray photoelectron spectroscopy, and atomic force microscopy, were conducted to elucidate the interfacial interaction mechanisms of HPDP on the surfaces of the two minerals at different scales. Additionally, molecular modeling calculations were used to detail the spatial matching relationship between HPDP and the crystal faces of the two minerals. It was emphasized that HPDP specifically adsorbed onto the dolomite surface by forming calcium phosphonate, ensuring that the dolomite surface remained hydrophilic and sank. Moreover, it was found that the adsorption strength of HPDP on the mineral surfaces depended on the activity of the metal sites and their spatial distribution. These findings provide a theoretical foundation for the molecular design of flotation reagents for high-calcium magnesite ores.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.