Wenbo Zhi , Yang Wu , Zhao Zhang , Min Luo , Bangyang Zhou , Wei Shao , Xingye Guo , Zheng Zhou , Dingyong He
{"title":"多组分二硅酸盐(Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 对 CMAS 和火山灰的抗腐蚀性能","authors":"Wenbo Zhi , Yang Wu , Zhao Zhang , Min Luo , Bangyang Zhou , Wei Shao , Xingye Guo , Zheng Zhou , Dingyong He","doi":"10.1016/j.corsci.2024.112484","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing operating temperature of gas turbine engines, calcium-magnesium-aluminosilicate (CMAS) poses a serious threat on environmental barrier coatings (EBCs) applied on hot-sections of aero-engines. Here, we have synthesized a novel multicomponent disilicate—(Ho<sub>0.2</sub>Er<sub>0.2</sub>Tm<sub>0.2</sub>Yb<sub>0.2</sub>Lu<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (brief to (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>), and comparatively studied its performance in the presence of synthesized CMAS and natural volcanic ash at 1400ºC. In comparison with Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> has a shorter Si-O bond length and a larger RE-O bond length because of the larger average RE<sup>3+</sup> radius. After CMAS corrosion, some apatite grains precipitate at the CMAS/(5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> interface to develop a loose reaction layer, exhibiting a higher corrosion resistance than Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Meanwhile, the consumption of CaO and release of SiO<sub>2</sub> during the chemical reaction process increase the viscosity of CMAS to some extent and thus weaken its infiltration propensity. For the volcanic ash case, it directly infiltrates into the interior of (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> along grain boundaries without any reaction due to the relatively low CaO content, exhibiting a more serious attacking behavior. In addition, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> effectively increases the contact angle of molten volcanic ash due to its lower surface energy. These finds here provide a better understanding for the design and application of next-generation EBC material.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112484"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance of multicomponent disilicate (Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 against CMAS and volcanic ash\",\"authors\":\"Wenbo Zhi , Yang Wu , Zhao Zhang , Min Luo , Bangyang Zhou , Wei Shao , Xingye Guo , Zheng Zhou , Dingyong He\",\"doi\":\"10.1016/j.corsci.2024.112484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing operating temperature of gas turbine engines, calcium-magnesium-aluminosilicate (CMAS) poses a serious threat on environmental barrier coatings (EBCs) applied on hot-sections of aero-engines. Here, we have synthesized a novel multicomponent disilicate—(Ho<sub>0.2</sub>Er<sub>0.2</sub>Tm<sub>0.2</sub>Yb<sub>0.2</sub>Lu<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> (brief to (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>), and comparatively studied its performance in the presence of synthesized CMAS and natural volcanic ash at 1400ºC. In comparison with Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> has a shorter Si-O bond length and a larger RE-O bond length because of the larger average RE<sup>3+</sup> radius. After CMAS corrosion, some apatite grains precipitate at the CMAS/(5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> interface to develop a loose reaction layer, exhibiting a higher corrosion resistance than Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>. Meanwhile, the consumption of CaO and release of SiO<sub>2</sub> during the chemical reaction process increase the viscosity of CMAS to some extent and thus weaken its infiltration propensity. For the volcanic ash case, it directly infiltrates into the interior of (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> along grain boundaries without any reaction due to the relatively low CaO content, exhibiting a more serious attacking behavior. In addition, (5RE<sub>0.2</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> effectively increases the contact angle of molten volcanic ash due to its lower surface energy. These finds here provide a better understanding for the design and application of next-generation EBC material.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"240 \",\"pages\":\"Article 112484\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X24006796\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24006796","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion resistance of multicomponent disilicate (Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 against CMAS and volcanic ash
With the increasing operating temperature of gas turbine engines, calcium-magnesium-aluminosilicate (CMAS) poses a serious threat on environmental barrier coatings (EBCs) applied on hot-sections of aero-engines. Here, we have synthesized a novel multicomponent disilicate—(Ho0.2Er0.2Tm0.2Yb0.2Lu0.2)2Si2O7 (brief to (5RE0.2)2Si2O7), and comparatively studied its performance in the presence of synthesized CMAS and natural volcanic ash at 1400ºC. In comparison with Yb2Si2O7, (5RE0.2)2Si2O7 has a shorter Si-O bond length and a larger RE-O bond length because of the larger average RE3+ radius. After CMAS corrosion, some apatite grains precipitate at the CMAS/(5RE0.2)2Si2O7 interface to develop a loose reaction layer, exhibiting a higher corrosion resistance than Yb2Si2O7. Meanwhile, the consumption of CaO and release of SiO2 during the chemical reaction process increase the viscosity of CMAS to some extent and thus weaken its infiltration propensity. For the volcanic ash case, it directly infiltrates into the interior of (5RE0.2)2Si2O7 along grain boundaries without any reaction due to the relatively low CaO content, exhibiting a more serious attacking behavior. In addition, (5RE0.2)2Si2O7 effectively increases the contact angle of molten volcanic ash due to its lower surface energy. These finds here provide a better understanding for the design and application of next-generation EBC material.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.