K. Sipilä , P. Ferreirós , T. Ikäläinen , A. Mikkelson , I. Betova , M. Bojinov
{"title":"氧清除剂的分解产物及其对蒸汽发生器材料腐蚀的影响 - I. 二乙基羟胺和碳酰肼","authors":"K. Sipilä , P. Ferreirós , T. Ikäläinen , A. Mikkelson , I. Betova , M. Bojinov","doi":"10.1016/j.corsci.2024.112476","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrazine used as oxygen scavenger in the secondary circuit of pressurized water reactors is hazardous to the environment and potentially carcinogenic, thus, suitable replacement chemicals for it are actively sought. In the present paper, decomposition products of two potential replacements – carbohydrazide and diethyl-hydroxylamine – are analyzed, and their effect on secondary water chemistry and corrosion of the main steam generator materials – carbon steel 22 K, stainless steel 0X18H10T and Alloy 690 – is studied by in-situ electrochemical techniques complemented by ex-situ analyses of the formed oxides by spectroscopic and microscopic methods. Quantitative interpretation of the electrochemical impedance data with the Mixed-Conduction Model allowed for the estimation of oxidation and corrosion release rates depending on scavenger formulation, alloy type and temperature. Conclusions on the extent of interaction of decomposition products with construction materials are drawn based on the experimental and calculational results.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112476"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition products of oxygen scavengers and their effect on corrosion of steam generator materials – I. Diethyl-hydroxylamine and carbohydrazide\",\"authors\":\"K. Sipilä , P. Ferreirós , T. Ikäläinen , A. Mikkelson , I. Betova , M. Bojinov\",\"doi\":\"10.1016/j.corsci.2024.112476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrazine used as oxygen scavenger in the secondary circuit of pressurized water reactors is hazardous to the environment and potentially carcinogenic, thus, suitable replacement chemicals for it are actively sought. In the present paper, decomposition products of two potential replacements – carbohydrazide and diethyl-hydroxylamine – are analyzed, and their effect on secondary water chemistry and corrosion of the main steam generator materials – carbon steel 22 K, stainless steel 0X18H10T and Alloy 690 – is studied by in-situ electrochemical techniques complemented by ex-situ analyses of the formed oxides by spectroscopic and microscopic methods. Quantitative interpretation of the electrochemical impedance data with the Mixed-Conduction Model allowed for the estimation of oxidation and corrosion release rates depending on scavenger formulation, alloy type and temperature. Conclusions on the extent of interaction of decomposition products with construction materials are drawn based on the experimental and calculational results.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"240 \",\"pages\":\"Article 112476\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X24006711\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24006711","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Decomposition products of oxygen scavengers and their effect on corrosion of steam generator materials – I. Diethyl-hydroxylamine and carbohydrazide
Hydrazine used as oxygen scavenger in the secondary circuit of pressurized water reactors is hazardous to the environment and potentially carcinogenic, thus, suitable replacement chemicals for it are actively sought. In the present paper, decomposition products of two potential replacements – carbohydrazide and diethyl-hydroxylamine – are analyzed, and their effect on secondary water chemistry and corrosion of the main steam generator materials – carbon steel 22 K, stainless steel 0X18H10T and Alloy 690 – is studied by in-situ electrochemical techniques complemented by ex-situ analyses of the formed oxides by spectroscopic and microscopic methods. Quantitative interpretation of the electrochemical impedance data with the Mixed-Conduction Model allowed for the estimation of oxidation and corrosion release rates depending on scavenger formulation, alloy type and temperature. Conclusions on the extent of interaction of decomposition products with construction materials are drawn based on the experimental and calculational results.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.