{"title":"基于纳米结构策略和掺杂剂的可控多色光学玻璃陶瓷","authors":"Junyi Wang, Feifei Huang, Guoqing Jiang, Ruoshan Lei, Denghao Li, Shiqing Xu","doi":"10.1016/j.jlumin.2024.120917","DOIUrl":null,"url":null,"abstract":"<div><div>Novel functional materials that integrate multiple tunable luminescence modes hold significant scientific and application potential. In this study, nanostructure strategies were employed to fabricate a series of microcrystalline glasses doped with rare-earth and transition-metal ions. The crystallization behavior of the nanocrystals (NCs) was revealed through high-resolution transmission electron microscopy (HRTEM), and the photoluminescence spectra of the samples were systematically investigated, demonstrating the achievement of independent and efficient visible light emission. With the further addition of the dopant Mn<sup>2+</sup>, it can occupy different sites to generate efficient energy transfer for ions, effectively improve the luminous efficiency, and changing the Mn<sup>2+</sup> concentration can achieve a wide tunable color gamut. In addition, by exciting the glass samples with different excitation light sources, tunable emission of both red and blue was achieved. The results demonstrated the significant potential of the experimental samples as new multifunctional materials for optical dynamic anti-counterfeiting applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable multicolored optical glass-ceramics based on nanostructure strategies and dopants\",\"authors\":\"Junyi Wang, Feifei Huang, Guoqing Jiang, Ruoshan Lei, Denghao Li, Shiqing Xu\",\"doi\":\"10.1016/j.jlumin.2024.120917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel functional materials that integrate multiple tunable luminescence modes hold significant scientific and application potential. In this study, nanostructure strategies were employed to fabricate a series of microcrystalline glasses doped with rare-earth and transition-metal ions. The crystallization behavior of the nanocrystals (NCs) was revealed through high-resolution transmission electron microscopy (HRTEM), and the photoluminescence spectra of the samples were systematically investigated, demonstrating the achievement of independent and efficient visible light emission. With the further addition of the dopant Mn<sup>2+</sup>, it can occupy different sites to generate efficient energy transfer for ions, effectively improve the luminous efficiency, and changing the Mn<sup>2+</sup> concentration can achieve a wide tunable color gamut. In addition, by exciting the glass samples with different excitation light sources, tunable emission of both red and blue was achieved. The results demonstrated the significant potential of the experimental samples as new multifunctional materials for optical dynamic anti-counterfeiting applications.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324004812\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004812","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Controllable multicolored optical glass-ceramics based on nanostructure strategies and dopants
Novel functional materials that integrate multiple tunable luminescence modes hold significant scientific and application potential. In this study, nanostructure strategies were employed to fabricate a series of microcrystalline glasses doped with rare-earth and transition-metal ions. The crystallization behavior of the nanocrystals (NCs) was revealed through high-resolution transmission electron microscopy (HRTEM), and the photoluminescence spectra of the samples were systematically investigated, demonstrating the achievement of independent and efficient visible light emission. With the further addition of the dopant Mn2+, it can occupy different sites to generate efficient energy transfer for ions, effectively improve the luminous efficiency, and changing the Mn2+ concentration can achieve a wide tunable color gamut. In addition, by exciting the glass samples with different excitation light sources, tunable emission of both red and blue was achieved. The results demonstrated the significant potential of the experimental samples as new multifunctional materials for optical dynamic anti-counterfeiting applications.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.