大规模深度学习发现 PKI-179 和 MTI-31 对冠状病毒的抗病毒潜力

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Demi van der Horst , Madalina E. Carter-Timofte , Adeline Danneels , Leandro Silva da Costa , Naziia Kurmasheva , Anne L. Thielke , Anne Louise Hansen , Vladimir Chorošajev , Christian K. Holm , Sandrine Belouzard , Ivan de Weber , Cedric Beny , David Olagnier
{"title":"大规模深度学习发现 PKI-179 和 MTI-31 对冠状病毒的抗病毒潜力","authors":"Demi van der Horst ,&nbsp;Madalina E. Carter-Timofte ,&nbsp;Adeline Danneels ,&nbsp;Leandro Silva da Costa ,&nbsp;Naziia Kurmasheva ,&nbsp;Anne L. Thielke ,&nbsp;Anne Louise Hansen ,&nbsp;Vladimir Chorošajev ,&nbsp;Christian K. Holm ,&nbsp;Sandrine Belouzard ,&nbsp;Ivan de Weber ,&nbsp;Cedric Beny ,&nbsp;David Olagnier","doi":"10.1016/j.antiviral.2024.106012","DOIUrl":null,"url":null,"abstract":"<div><div>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with <em>in vitro</em> validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for <em>in vitro</em> testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with <em>in vitro</em> testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 106012"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses\",\"authors\":\"Demi van der Horst ,&nbsp;Madalina E. Carter-Timofte ,&nbsp;Adeline Danneels ,&nbsp;Leandro Silva da Costa ,&nbsp;Naziia Kurmasheva ,&nbsp;Anne L. Thielke ,&nbsp;Anne Louise Hansen ,&nbsp;Vladimir Chorošajev ,&nbsp;Christian K. Holm ,&nbsp;Sandrine Belouzard ,&nbsp;Ivan de Weber ,&nbsp;Cedric Beny ,&nbsp;David Olagnier\",\"doi\":\"10.1016/j.antiviral.2024.106012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with <em>in vitro</em> validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for <em>in vitro</em> testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with <em>in vitro</em> testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.</div></div>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\"231 \",\"pages\":\"Article 106012\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166354224002213\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)导致冠状病毒病(2019 年)(COVID-19)在全球大流行,凸显了有效抗病毒药物的紧迫性。尽管开发了不同的疫苗接种策略,但寻找特异性抗病毒化合物仍然至关重要。在这里,我们将机器学习(ML)技术与体外验证相结合,有效地确定了潜在的抗病毒化合物。我们利用各种技术克服了可用于 ML 的 SARS-CoV-2 数据量有限的问题,并补充了来自各种生物医学检测的数据,从而实现了深度神经网络架构的端到端训练。我们利用其预测结果来识别化合物并确定其体外测试的优先次序。最初被鉴定为 Pi3K-mTORC1/2 通路抑制剂的两个热门化合物 PKI-179 和 MTI-31 在低微摩尔剂量下对 SARS-CoV-2 具有显著的抗病毒活性。值得注意的是,这两种化合物的效果优于著名的 mTOR 抑制剂雷帕霉素。此外,PKI-179 和 MTI-31 对 SARS-CoV-2 变异株和其他冠状病毒具有广谱抗病毒活性。在生理学相关模型中,这两种化合物在气液界面(ALI)培养的健康捐献者原代人气道上皮(HAE)培养物中显示出抗病毒作用。这项研究凸显了人工智能方法与体外测试相结合加快药物发现的潜力,强调了人工智能方法对不同病毒的适应性,从而有助于大流行病的防备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses

Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信