Meng-Li He , Lian-Lian Xu , Yang Liu , Yan-Ping Gao , Yong-Ming Luo , Rong-Cai Yue , Fang-You Chen
{"title":"来自 Chloranthus henryi 的结构多样的倍半萜类化合物及其对 H2O2 损伤的 PC12 细胞的神经保护活性","authors":"Meng-Li He , Lian-Lian Xu , Yang Liu , Yan-Ping Gao , Yong-Ming Luo , Rong-Cai Yue , Fang-You Chen","doi":"10.1016/j.phytochem.2024.114292","DOIUrl":null,"url":null,"abstract":"<div><div>Fifteen undescribed sesquiterpenoid monomers, including six pairs of sesquiterpenoid enantiomers (<strong>1a</strong>/<strong>1b</strong>–<strong>3a</strong>/<strong>3b</strong> and <strong>5a</strong>/<strong>5b</strong>–<strong>7a</strong>/<strong>7b</strong>) and three analogues (<strong>4</strong>, <strong>8</strong>, and <strong>9</strong>), together with two known sesquiterpenoid dimers (<strong>10</strong> and <strong>11</strong>) were isolated from the whole plant of <em>Chloranthus henryi</em> Hemsl. Their structures were characterized by spectroscopic data analysis, ECD calculations, and single crystal X-Ray diffractions. Compounds <strong>1a</strong> and <strong>1b</strong> were highly aromatic cadinane-type sesquiterpenoids. At a concentration of 10 μM, compounds <strong>8</strong>, <strong>10</strong>, and <strong>11</strong> exhibited potent neuroprotective activity against H<sub>2</sub>O<sub>2</sub>-induced PC12 cell damage. Compounds <strong>10</strong> and <strong>11</strong> significantly decreased the level of ROS. In addition, compound <strong>11</strong> increased the levels of <em>p</em>-AMPK, <em>p</em>-SIRT1, and SIRT3 in the H<sub>2</sub>O<sub>2</sub>-induced PC12 cell damage via activated the AMPK/SIRT signaling pathway.</div></div>","PeriodicalId":20170,"journal":{"name":"Phytochemistry","volume":"229 ","pages":"Article 114292"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structurally diversified sesquiterpenoids from Chloranthus henryi and their neuroprotective activities on H2O2 damaged PC12 cells\",\"authors\":\"Meng-Li He , Lian-Lian Xu , Yang Liu , Yan-Ping Gao , Yong-Ming Luo , Rong-Cai Yue , Fang-You Chen\",\"doi\":\"10.1016/j.phytochem.2024.114292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fifteen undescribed sesquiterpenoid monomers, including six pairs of sesquiterpenoid enantiomers (<strong>1a</strong>/<strong>1b</strong>–<strong>3a</strong>/<strong>3b</strong> and <strong>5a</strong>/<strong>5b</strong>–<strong>7a</strong>/<strong>7b</strong>) and three analogues (<strong>4</strong>, <strong>8</strong>, and <strong>9</strong>), together with two known sesquiterpenoid dimers (<strong>10</strong> and <strong>11</strong>) were isolated from the whole plant of <em>Chloranthus henryi</em> Hemsl. Their structures were characterized by spectroscopic data analysis, ECD calculations, and single crystal X-Ray diffractions. Compounds <strong>1a</strong> and <strong>1b</strong> were highly aromatic cadinane-type sesquiterpenoids. At a concentration of 10 μM, compounds <strong>8</strong>, <strong>10</strong>, and <strong>11</strong> exhibited potent neuroprotective activity against H<sub>2</sub>O<sub>2</sub>-induced PC12 cell damage. Compounds <strong>10</strong> and <strong>11</strong> significantly decreased the level of ROS. In addition, compound <strong>11</strong> increased the levels of <em>p</em>-AMPK, <em>p</em>-SIRT1, and SIRT3 in the H<sub>2</sub>O<sub>2</sub>-induced PC12 cell damage via activated the AMPK/SIRT signaling pathway.</div></div>\",\"PeriodicalId\":20170,\"journal\":{\"name\":\"Phytochemistry\",\"volume\":\"229 \",\"pages\":\"Article 114292\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031942224003297\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031942224003297","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structurally diversified sesquiterpenoids from Chloranthus henryi and their neuroprotective activities on H2O2 damaged PC12 cells
Fifteen undescribed sesquiterpenoid monomers, including six pairs of sesquiterpenoid enantiomers (1a/1b–3a/3b and 5a/5b–7a/7b) and three analogues (4, 8, and 9), together with two known sesquiterpenoid dimers (10 and 11) were isolated from the whole plant of Chloranthus henryi Hemsl. Their structures were characterized by spectroscopic data analysis, ECD calculations, and single crystal X-Ray diffractions. Compounds 1a and 1b were highly aromatic cadinane-type sesquiterpenoids. At a concentration of 10 μM, compounds 8, 10, and 11 exhibited potent neuroprotective activity against H2O2-induced PC12 cell damage. Compounds 10 and 11 significantly decreased the level of ROS. In addition, compound 11 increased the levels of p-AMPK, p-SIRT1, and SIRT3 in the H2O2-induced PC12 cell damage via activated the AMPK/SIRT signaling pathway.
期刊介绍:
Phytochemistry is a leading international journal publishing studies of plant chemistry, biochemistry, molecular biology and genetics, structure and bioactivities of phytochemicals, including ''-omics'' and bioinformatics/computational biology approaches. Phytochemistry is a primary source for papers dealing with phytochemicals, especially reports concerning their biosynthesis, regulation, and biological properties both in planta and as bioactive principles. Articles are published online as soon as possible as Articles-in-Press and in 12 volumes per year. Occasional topic-focussed special issues are published composed of papers from invited authors.