多实体强化主要路径分析:考虑知识邻近性的异构网络嵌入

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhaoping Yan , Kaiyu Fan
{"title":"多实体强化主要路径分析:考虑知识邻近性的异构网络嵌入","authors":"Zhaoping Yan ,&nbsp;Kaiyu Fan","doi":"10.1016/j.joi.2024.101593","DOIUrl":null,"url":null,"abstract":"<div><div>Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-entity reinforced main path analysis: Heterogeneous network embedding considering knowledge proximity\",\"authors\":\"Zhaoping Yan ,&nbsp;Kaiyu Fan\",\"doi\":\"10.1016/j.joi.2024.101593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724001056\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001056","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

主路径分析(MPA)是检测特定研究领域知识传播轨迹的重要方法。以往的研究总是关注基于引文的关系,忽略了引文网络中的其他结构形式。本研究通过从论文元数据(包括引文、作者、期刊和关键词)构建知识图谱,引入了多实体强化 MPA 模型。我们构建了异构网络来揭示不同实体之间的关系。我们采用不同的知识图谱嵌入模型来训练网络,从而获得实体和关系嵌入。采用余弦相似度算法来衡量这些嵌入之间的知识接近度。我们以物联网领域为例,通过定量和定性分析验证了多实体强化 MPA 的性能。我们的研究结果表明,调整后的 MPA 表现出更强的主题相关性,证明了该方法在捕捉复杂知识关系方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-entity reinforced main path analysis: Heterogeneous network embedding considering knowledge proximity
Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信