{"title":"多实体强化主要路径分析:考虑知识邻近性的异构网络嵌入","authors":"Zhaoping Yan , Kaiyu Fan","doi":"10.1016/j.joi.2024.101593","DOIUrl":null,"url":null,"abstract":"<div><div>Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.</div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 4","pages":"Article 101593"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-entity reinforced main path analysis: Heterogeneous network embedding considering knowledge proximity\",\"authors\":\"Zhaoping Yan , Kaiyu Fan\",\"doi\":\"10.1016/j.joi.2024.101593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.</div></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":\"18 4\",\"pages\":\"Article 101593\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724001056\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001056","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multi-entity reinforced main path analysis: Heterogeneous network embedding considering knowledge proximity
Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.