Y. Khadiri , A. Legrand , C. Volkringer , A. Anouar , S. Royer , A. El Kadib , T. Loiseau , J. Dhainaut
{"title":"用于二氧化碳捕集的含氧化石墨烯壳聚糖@HKUST-1 珠子具有更高的化学稳定性","authors":"Y. Khadiri , A. Legrand , C. Volkringer , A. Anouar , S. Royer , A. El Kadib , T. Loiseau , J. Dhainaut","doi":"10.1016/j.mtsust.2024.100998","DOIUrl":null,"url":null,"abstract":"<div><div>HKUST-1 MOF was crystallized within chitosan matrix to form xerogel beads using an <em>in-situ</em> growth approach. Under mild conditions, CS@HKUST-1 xerogel beads exhibit high specific surface areas (S<sub>BET</sub>) up to 923 m<sup>2</sup> g<sup>−1</sup>. By further incorporating graphene oxide (GO) to form ternary CS-GO@HKUST-1 xerogel beads, the HKUST-1 MOF structure remained stable for up to two days in a water solution at room temperature, whereas the MOF powder and CS@HKUST-1 xerogel beads underwent significant framework collapse within a day. CO<sub>2</sub> adsorption measurements on these xerogel beads also show promising CO<sub>2</sub> uptakes, surpassing 2.5 mmol g<sup>−1</sup> at 298 K and 1 bar. Moreover, these composites could be regenerated for more than 10 cycles without any loss of quantity adsorbed.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100998"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide-containing chitosan@HKUST-1 beads with increased chemical stability for CO2 capture\",\"authors\":\"Y. Khadiri , A. Legrand , C. Volkringer , A. Anouar , S. Royer , A. El Kadib , T. Loiseau , J. Dhainaut\",\"doi\":\"10.1016/j.mtsust.2024.100998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>HKUST-1 MOF was crystallized within chitosan matrix to form xerogel beads using an <em>in-situ</em> growth approach. Under mild conditions, CS@HKUST-1 xerogel beads exhibit high specific surface areas (S<sub>BET</sub>) up to 923 m<sup>2</sup> g<sup>−1</sup>. By further incorporating graphene oxide (GO) to form ternary CS-GO@HKUST-1 xerogel beads, the HKUST-1 MOF structure remained stable for up to two days in a water solution at room temperature, whereas the MOF powder and CS@HKUST-1 xerogel beads underwent significant framework collapse within a day. CO<sub>2</sub> adsorption measurements on these xerogel beads also show promising CO<sub>2</sub> uptakes, surpassing 2.5 mmol g<sup>−1</sup> at 298 K and 1 bar. Moreover, these composites could be regenerated for more than 10 cycles without any loss of quantity adsorbed.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 100998\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003348\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Graphene oxide-containing chitosan@HKUST-1 beads with increased chemical stability for CO2 capture
HKUST-1 MOF was crystallized within chitosan matrix to form xerogel beads using an in-situ growth approach. Under mild conditions, CS@HKUST-1 xerogel beads exhibit high specific surface areas (SBET) up to 923 m2 g−1. By further incorporating graphene oxide (GO) to form ternary CS-GO@HKUST-1 xerogel beads, the HKUST-1 MOF structure remained stable for up to two days in a water solution at room temperature, whereas the MOF powder and CS@HKUST-1 xerogel beads underwent significant framework collapse within a day. CO2 adsorption measurements on these xerogel beads also show promising CO2 uptakes, surpassing 2.5 mmol g−1 at 298 K and 1 bar. Moreover, these composites could be regenerated for more than 10 cycles without any loss of quantity adsorbed.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.