Rajesh Kumar , S.K. Maurya , Abdelghani Errehymy , G. Mustafa , Abdel-Haleem Abdel-Aty , H.I. Alrebdi , Mona Mahmoud
{"title":"f(R)引力下的各向异性杜尔加帕尔-富勒里亚紧凑星","authors":"Rajesh Kumar , S.K. Maurya , Abdelghani Errehymy , G. Mustafa , Abdel-Haleem Abdel-Aty , H.I. Alrebdi , Mona Mahmoud","doi":"10.1016/j.nuclphysb.2024.116690","DOIUrl":null,"url":null,"abstract":"<div><div>This study presented a new exact solution for anisotropic compact stellar objects within the framework of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>=</mo><mi>R</mi><mo>+</mo><mi>α</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> gravity. In this context, the Durgapal-Fuloria metric potential has been employed to solve the field equation derived for <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> theory. Furthermore, we have derived the generalized Darmois-Israel junction condition necessary for seamlessly connecting the interior region to the Schwarzschild exterior metric across the boundary hypersurface of the star in the context of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, and the interior solution is matched with the Schwarzschild exterior metric over the bounding surface of a compact star. These junction conditions stipulate that the pressure must not be zero at the boundary and should be proportional to the non-linear terms of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, a crucial aspect often overlooked by many researchers when investigating compact stellar models. Additionally, we derived the values of these parameters by using observational data of various compact stars (CSs), namely Her X-1, SAX J1808.4-3658, SMC X-1, LMC X-4, Cen X-3, 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, and PSR J1416-2230. This approach enables us to investigate the comprehensive analysis of solutions numerically and graphically. We conducted various physical tests, including gradient of energy density and pressures, anisotropy, stability, equilibrium conditions, energy-density constraints, mass function, compactness, redshift, and adiabatic index, to assess the feasibility of our models. Our findings demonstrate the consistent behavior of our models provides a satisfactory physical situation as far as the observational results are confirmed.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116690"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Durgapal-Fuloria compact stars in f(R) gravity\",\"authors\":\"Rajesh Kumar , S.K. Maurya , Abdelghani Errehymy , G. Mustafa , Abdel-Haleem Abdel-Aty , H.I. Alrebdi , Mona Mahmoud\",\"doi\":\"10.1016/j.nuclphysb.2024.116690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presented a new exact solution for anisotropic compact stellar objects within the framework of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>=</mo><mi>R</mi><mo>+</mo><mi>α</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> gravity. In this context, the Durgapal-Fuloria metric potential has been employed to solve the field equation derived for <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> theory. Furthermore, we have derived the generalized Darmois-Israel junction condition necessary for seamlessly connecting the interior region to the Schwarzschild exterior metric across the boundary hypersurface of the star in the context of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, and the interior solution is matched with the Schwarzschild exterior metric over the bounding surface of a compact star. These junction conditions stipulate that the pressure must not be zero at the boundary and should be proportional to the non-linear terms of <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> gravity, a crucial aspect often overlooked by many researchers when investigating compact stellar models. Additionally, we derived the values of these parameters by using observational data of various compact stars (CSs), namely Her X-1, SAX J1808.4-3658, SMC X-1, LMC X-4, Cen X-3, 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, and PSR J1416-2230. This approach enables us to investigate the comprehensive analysis of solutions numerically and graphically. We conducted various physical tests, including gradient of energy density and pressures, anisotropy, stability, equilibrium conditions, energy-density constraints, mass function, compactness, redshift, and adiabatic index, to assess the feasibility of our models. Our findings demonstrate the consistent behavior of our models provides a satisfactory physical situation as far as the observational results are confirmed.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1008 \",\"pages\":\"Article 116690\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002566\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002566","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Anisotropic Durgapal-Fuloria compact stars in f(R) gravity
This study presented a new exact solution for anisotropic compact stellar objects within the framework of gravity. In this context, the Durgapal-Fuloria metric potential has been employed to solve the field equation derived for theory. Furthermore, we have derived the generalized Darmois-Israel junction condition necessary for seamlessly connecting the interior region to the Schwarzschild exterior metric across the boundary hypersurface of the star in the context of gravity, and the interior solution is matched with the Schwarzschild exterior metric over the bounding surface of a compact star. These junction conditions stipulate that the pressure must not be zero at the boundary and should be proportional to the non-linear terms of gravity, a crucial aspect often overlooked by many researchers when investigating compact stellar models. Additionally, we derived the values of these parameters by using observational data of various compact stars (CSs), namely Her X-1, SAX J1808.4-3658, SMC X-1, LMC X-4, Cen X-3, 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, and PSR J1416-2230. This approach enables us to investigate the comprehensive analysis of solutions numerically and graphically. We conducted various physical tests, including gradient of energy density and pressures, anisotropy, stability, equilibrium conditions, energy-density constraints, mass function, compactness, redshift, and adiabatic index, to assess the feasibility of our models. Our findings demonstrate the consistent behavior of our models provides a satisfactory physical situation as far as the observational results are confirmed.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.