Jian Chen , Yao Kang , Xudong Wang , Hao Huang , Man Yao
{"title":"显著促进层间离子扩散,将 MoS2 /MoBS 异质结构用作高性能锂/钽离子电池阳极材料","authors":"Jian Chen , Yao Kang , Xudong Wang , Hao Huang , Man Yao","doi":"10.1016/j.surfin.2024.105142","DOIUrl":null,"url":null,"abstract":"<div><div>As a member of the new two-dimensional materials family, functionalized MoB (MBene) attracts great interest as energy storage materials due to their excellent mechanical properties and metallicity. Here, we aim to leverage the superior properties of MBene to develop new promising electron materials for Li/Na-ion batteries by designing the MoS2 /MoBS heterostructure. Our investigation focuses on the structural stability, mechanical and electrochemical properties by first-principles calculation. The high Young's modulus, robust structural stability and metallicity prevent the electrode pulverization and guarantee cycle stability of battery. Impressively, the interlayer diffusion barriers of Li and Na atoms are only 0.26 and 0.16 eV, outperforming other MoS<sub>2</sub>-based heterostructures. With calculated open circuit voltage of 0.01–1.83 V for Li atoms and 0.02–1.28 V for Na atoms, the heterostructure is suitable for deployment as an anode material. Besides, the reversible specific capacity (376 mAh/g) of Li atoms is improved by the electron transfer caused by the formation of heterostructure compared to that of monolayer MoS<sub>2</sub> (335 mAh/g) and MoBS(193 mAh/g). These findings fully underline the potential of MoS<sub>2</sub>/MoBS heterostructure as anode material of Li/Na-ion batteries.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant promotion of interlayer ion diffusion for MoS2 /MoBS heterostructure as high performance Li/Na ion batteries anode material\",\"authors\":\"Jian Chen , Yao Kang , Xudong Wang , Hao Huang , Man Yao\",\"doi\":\"10.1016/j.surfin.2024.105142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a member of the new two-dimensional materials family, functionalized MoB (MBene) attracts great interest as energy storage materials due to their excellent mechanical properties and metallicity. Here, we aim to leverage the superior properties of MBene to develop new promising electron materials for Li/Na-ion batteries by designing the MoS2 /MoBS heterostructure. Our investigation focuses on the structural stability, mechanical and electrochemical properties by first-principles calculation. The high Young's modulus, robust structural stability and metallicity prevent the electrode pulverization and guarantee cycle stability of battery. Impressively, the interlayer diffusion barriers of Li and Na atoms are only 0.26 and 0.16 eV, outperforming other MoS<sub>2</sub>-based heterostructures. With calculated open circuit voltage of 0.01–1.83 V for Li atoms and 0.02–1.28 V for Na atoms, the heterostructure is suitable for deployment as an anode material. Besides, the reversible specific capacity (376 mAh/g) of Li atoms is improved by the electron transfer caused by the formation of heterostructure compared to that of monolayer MoS<sub>2</sub> (335 mAh/g) and MoBS(193 mAh/g). These findings fully underline the potential of MoS<sub>2</sub>/MoBS heterostructure as anode material of Li/Na-ion batteries.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012987\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012987","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Significant promotion of interlayer ion diffusion for MoS2 /MoBS heterostructure as high performance Li/Na ion batteries anode material
As a member of the new two-dimensional materials family, functionalized MoB (MBene) attracts great interest as energy storage materials due to their excellent mechanical properties and metallicity. Here, we aim to leverage the superior properties of MBene to develop new promising electron materials for Li/Na-ion batteries by designing the MoS2 /MoBS heterostructure. Our investigation focuses on the structural stability, mechanical and electrochemical properties by first-principles calculation. The high Young's modulus, robust structural stability and metallicity prevent the electrode pulverization and guarantee cycle stability of battery. Impressively, the interlayer diffusion barriers of Li and Na atoms are only 0.26 and 0.16 eV, outperforming other MoS2-based heterostructures. With calculated open circuit voltage of 0.01–1.83 V for Li atoms and 0.02–1.28 V for Na atoms, the heterostructure is suitable for deployment as an anode material. Besides, the reversible specific capacity (376 mAh/g) of Li atoms is improved by the electron transfer caused by the formation of heterostructure compared to that of monolayer MoS2 (335 mAh/g) and MoBS(193 mAh/g). These findings fully underline the potential of MoS2/MoBS heterostructure as anode material of Li/Na-ion batteries.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.