快速燃料:利用高分辨率三维燃料数据和数据同化推进野地火灾建模

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anthony Marcozzi , Lucas Wells , Russell Parsons , Eric Mueller , Rodman Linn , J. Kevin Hiers
{"title":"快速燃料:利用高分辨率三维燃料数据和数据同化推进野地火灾建模","authors":"Anthony Marcozzi ,&nbsp;Lucas Wells ,&nbsp;Russell Parsons ,&nbsp;Eric Mueller ,&nbsp;Rodman Linn ,&nbsp;J. Kevin Hiers","doi":"10.1016/j.envsoft.2024.106214","DOIUrl":null,"url":null,"abstract":"<div><div>Acquiring detailed 3D fuel data for advanced fire models remains challenging, particularly at large scales. To address this need, we present FastFuels, a novel platform designed to generate detailed 3D fuel data and accelerate the use of advanced fire models. FastFuels integrates existing fuel and spatial data with innovative modeling techniques to represent complex 3D fuel arrangements across landscapes. It leverages data sources including the Forest Inventory and Analysis (FIA) database and plot imputation maps, and incorporates advanced features such as data assimilation from LiDAR. This research demonstrates FastFuels’ capabilities through two applications: evaluating fuel treatment effectiveness with the Fire Dynamics Simulator and simulating a prescribed fire operation using QUIC-Fire. FastFuels provides previously unavailable 3D fuel data at landscape scales, empowering informed decision-making, detailed investigations of fuel treatment impacts, and higher-resolution risk assessments. Its flexible data assimilation and model-agnostic outputs accelerate advanced fire science and support fire management decisions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106214"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FastFuels: Advancing wildland fire modeling with high-resolution 3D fuel data and data assimilation\",\"authors\":\"Anthony Marcozzi ,&nbsp;Lucas Wells ,&nbsp;Russell Parsons ,&nbsp;Eric Mueller ,&nbsp;Rodman Linn ,&nbsp;J. Kevin Hiers\",\"doi\":\"10.1016/j.envsoft.2024.106214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acquiring detailed 3D fuel data for advanced fire models remains challenging, particularly at large scales. To address this need, we present FastFuels, a novel platform designed to generate detailed 3D fuel data and accelerate the use of advanced fire models. FastFuels integrates existing fuel and spatial data with innovative modeling techniques to represent complex 3D fuel arrangements across landscapes. It leverages data sources including the Forest Inventory and Analysis (FIA) database and plot imputation maps, and incorporates advanced features such as data assimilation from LiDAR. This research demonstrates FastFuels’ capabilities through two applications: evaluating fuel treatment effectiveness with the Fire Dynamics Simulator and simulating a prescribed fire operation using QUIC-Fire. FastFuels provides previously unavailable 3D fuel data at landscape scales, empowering informed decision-making, detailed investigations of fuel treatment impacts, and higher-resolution risk assessments. Its flexible data assimilation and model-agnostic outputs accelerate advanced fire science and support fire management decisions.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106214\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002755\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002755","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为高级火灾模型获取详细的三维燃料数据仍然具有挑战性,尤其是在大规模火灾中。为了满足这一需求,我们推出了 FastFuels,这是一个新颖的平台,旨在生成详细的三维燃料数据并加快先进火灾模型的使用。FastFuels 将现有的燃料和空间数据与创新的建模技术相结合,以表示地貌中复杂的三维燃料排列。它利用了森林资源清查与分析 (FIA) 数据库和地块估算图等数据源,并结合了激光雷达数据同化等先进功能。这项研究通过两项应用展示了FastFuels的功能:使用火灾动态模拟器评估燃料处理效果,以及使用QUIC-Fire模拟明火作业。FastFuels 在景观尺度上提供了以前无法获得的三维燃料数据,有助于做出明智的决策、详细调查燃料处理的影响以及进行更高分辨率的风险评估。其灵活的数据同化和与模型无关的输出可加速先进的火灾科学并支持火灾管理决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FastFuels: Advancing wildland fire modeling with high-resolution 3D fuel data and data assimilation
Acquiring detailed 3D fuel data for advanced fire models remains challenging, particularly at large scales. To address this need, we present FastFuels, a novel platform designed to generate detailed 3D fuel data and accelerate the use of advanced fire models. FastFuels integrates existing fuel and spatial data with innovative modeling techniques to represent complex 3D fuel arrangements across landscapes. It leverages data sources including the Forest Inventory and Analysis (FIA) database and plot imputation maps, and incorporates advanced features such as data assimilation from LiDAR. This research demonstrates FastFuels’ capabilities through two applications: evaluating fuel treatment effectiveness with the Fire Dynamics Simulator and simulating a prescribed fire operation using QUIC-Fire. FastFuels provides previously unavailable 3D fuel data at landscape scales, empowering informed decision-making, detailed investigations of fuel treatment impacts, and higher-resolution risk assessments. Its flexible data assimilation and model-agnostic outputs accelerate advanced fire science and support fire management decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信