具有分形扩张集的双线性最大算子的索波列夫平滑估计值

IF 1.7 2区 数学 Q1 MATHEMATICS
Tainara Borges , Benjamin Foster , Yumeng Ou
{"title":"具有分形扩张集的双线性最大算子的索波列夫平滑估计值","authors":"Tainara Borges ,&nbsp;Benjamin Foster ,&nbsp;Yumeng Ou","doi":"10.1016/j.jfa.2024.110694","DOIUrl":null,"url":null,"abstract":"<div><div>Given a hypersurface <span><math><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup></math></span>, we study the bilinear averaging operator that averages a pair of functions over <em>S</em>, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set <span><math><mi>E</mi><mo>⊂</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> using Fourier-analytic methods, which allow us to deduce additional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110694"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev smoothing estimates for bilinear maximal operators with fractal dilation sets\",\"authors\":\"Tainara Borges ,&nbsp;Benjamin Foster ,&nbsp;Yumeng Ou\",\"doi\":\"10.1016/j.jfa.2024.110694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a hypersurface <span><math><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup></math></span>, we study the bilinear averaging operator that averages a pair of functions over <em>S</em>, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set <span><math><mi>E</mi><mo>⊂</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> using Fourier-analytic methods, which allow us to deduce additional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110694\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003823\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003823","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个超曲面 S⊂R2d,我们研究将一对函数平均到 S 上的双线性平均算子,以及更一般的有限衰减双线性乘子和各种最大类似算子。尤其令人感兴趣的是与分形扩张集 E⊂[1,2] 相关的双线性最大算子;在这种情况下,最大算子的有界区域与超曲面的几何形状和扩张集维度的各种概念相关。特别是,我们利用傅立叶分析方法确定了指数 L2×L2→L2 的索波列夫平滑估计,从而推导出了算子的额外 Lp 改进边界,以及相关多尺度最大函数的稀疏边界及其加权推论。我们还扩展了该方法,以研究三角平均算子和双参数平均算子的类似问题。此外,我们还得到了这些算子有界性的一些必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev smoothing estimates for bilinear maximal operators with fractal dilation sets
Given a hypersurface SR2d, we study the bilinear averaging operator that averages a pair of functions over S, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set E[1,2]; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent L2×L2L2 using Fourier-analytic methods, which allow us to deduce additional Lp improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信