可能具有无限跳跃集的 SBV 函数的近似值

IF 1.7 2区 数学 Q1 MATHEMATICS
Sergio Conti , Matteo Focardi , Flaviana Iurlano
{"title":"可能具有无限跳跃集的 SBV 函数的近似值","authors":"Sergio Conti ,&nbsp;Matteo Focardi ,&nbsp;Flaviana Iurlano","doi":"10.1016/j.jfa.2024.110686","DOIUrl":null,"url":null,"abstract":"<div><div>We prove an approximation result for functions <span><math><mi>u</mi><mo>∈</mo><mi>S</mi><mi>B</mi><mi>V</mi><mo>(</mo><mi>Ω</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> such that ∇<em>u</em> is <em>p</em>-integrable, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>|</mo><mo>[</mo><mi>u</mi><mo>]</mo><mo>|</mo><mo>)</mo></math></span> is integrable over the jump set (whose <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> measure is possibly infinite), for some continuous, nondecreasing, subadditive function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, with <span><math><msubsup><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. The approximating functions <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are piecewise affine with piecewise affine jump set; the convergence is that of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and the convergence in energy for <span><math><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><mi>g</mi><mo>(</mo><mo>[</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> for suitable functions <em>g</em>. In particular, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> converges to <em>u BV</em>-strictly, area-strictly, and strongly in <em>BV</em> after composition with a bilipschitz map. If in addition <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>, we also have convergence of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110686"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of SBV functions with possibly infinite jump set\",\"authors\":\"Sergio Conti ,&nbsp;Matteo Focardi ,&nbsp;Flaviana Iurlano\",\"doi\":\"10.1016/j.jfa.2024.110686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove an approximation result for functions <span><math><mi>u</mi><mo>∈</mo><mi>S</mi><mi>B</mi><mi>V</mi><mo>(</mo><mi>Ω</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> such that ∇<em>u</em> is <em>p</em>-integrable, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>|</mo><mo>[</mo><mi>u</mi><mo>]</mo><mo>|</mo><mo>)</mo></math></span> is integrable over the jump set (whose <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> measure is possibly infinite), for some continuous, nondecreasing, subadditive function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, with <span><math><msubsup><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. The approximating functions <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are piecewise affine with piecewise affine jump set; the convergence is that of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and the convergence in energy for <span><math><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><mi>g</mi><mo>(</mo><mo>[</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> for suitable functions <em>g</em>. In particular, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> converges to <em>u BV</em>-strictly, area-strictly, and strongly in <em>BV</em> after composition with a bilipschitz map. If in addition <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>, we also have convergence of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110686\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003744\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003744","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了函数 u∈SBV(Ω;Rm)的近似结果:对于某个连续的、非递减的、次正函数 g0,∇u 是 p 可积分的,1≤p<∞,且 g0(|[u]|) 在跳跃集(其 Hn-1 度量可能是无限的)上是可积分的,g0-1(0)={0}。近似函数 uj 是片断仿射的,具有片断仿射跳跃集;uj 的收敛性是 L1 的收敛性,对于合适的函数 g,|∇uj|p 和 g([uj],νuj) 的收敛性是能量的收敛性。此外,如果 Hn-1(Ju)<∞,我们也会得到 Hn-1(Juj)向 Hn-1(Ju) 收敛的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of SBV functions with possibly infinite jump set
We prove an approximation result for functions uSBV(Ω;Rm) such that ∇u is p-integrable, 1p<, and g0(|[u]|) is integrable over the jump set (whose Hn1 measure is possibly infinite), for some continuous, nondecreasing, subadditive function g0, with g01(0)={0}. The approximating functions uj are piecewise affine with piecewise affine jump set; the convergence is that of L1 for uj and the convergence in energy for |uj|p and g([uj],νuj) for suitable functions g. In particular, uj converges to u BV-strictly, area-strictly, and strongly in BV after composition with a bilipschitz map. If in addition Hn1(Ju)<, we also have convergence of Hn1(Juj) to Hn1(Ju).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信