{"title":"无理环上具有卷积势的立方 NLS 方程中的索波列夫不稳定性","authors":"Filippo Giuliani","doi":"10.1016/j.jde.2024.09.044","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) <span><span>[11]</span></span> for the square case, to obtain the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-instability (<span><math><mi>s</mi><mo>></mo><mn>1</mn></math></span>) of the elliptic equilibrium <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>. We also provide the existence of solutions <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> with arbitrarily small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm which achieve a prescribed growth, say <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≥</mo><mi>K</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>K</mi><mo>≫</mo><mn>1</mn></math></span>, within a time <em>T</em> satisfying polynomial estimates, namely <span><math><mn>0</mn><mo><</mo><mi>T</mi><mo><</mo><msup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> for some <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev instability in the cubic NLS equation with convolution potentials on irrational tori\",\"authors\":\"Filippo Giuliani\",\"doi\":\"10.1016/j.jde.2024.09.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) <span><span>[11]</span></span> for the square case, to obtain the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-instability (<span><math><mi>s</mi><mo>></mo><mn>1</mn></math></span>) of the elliptic equilibrium <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>. We also provide the existence of solutions <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> with arbitrarily small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm which achieve a prescribed growth, say <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≥</mo><mi>K</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>K</mi><mo>≫</mo><mn>1</mn></math></span>, within a time <em>T</em> satisfying polynomial estimates, namely <span><math><mn>0</mn><mo><</mo><mi>T</mi><mo><</mo><msup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> for some <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006296\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了二维无理环上具有卷积势的立方 NLS 方程的解的存在性,随着时间的推移,这些解的索波列夫规范会发生任意大的增长。我们的结果也适用于平方(和有理)环的情况。我们弱化了 Guardia(2014)[11] 之前针对正方形情形的工作中所要求的卷积势的正则性假设,从而得到了椭圆均衡 u=0 的 Hs-不稳定性 (s>1)。我们还提供了具有任意小 L2 准则的解 u(t)的存在性,这些解在满足多项式估计(即 0<T<Kc for some c>0)的时间 T 内实现了规定增长,即‖u(T)‖Hs≥K‖u(0)‖Hs, K≫1。
Sobolev instability in the cubic NLS equation with convolution potentials on irrational tori
In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) [11] for the square case, to obtain the -instability () of the elliptic equilibrium . We also provide the existence of solutions with arbitrarily small norm which achieve a prescribed growth, say , , within a time T satisfying polynomial estimates, namely for some .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics