{"title":"利用液相色谱-高分辨质谱法对咖啡饮料中的多酚类物质进行分类和特征描述","authors":"Nerea Núñez , Javier Saurina , Oscar Núñez","doi":"10.1016/j.microc.2024.111770","DOIUrl":null,"url":null,"abstract":"<div><div>The importance of monitoring the presence of bioactive compounds as food attributes for sample classification and characterization is increasing. In this study, targeted Liquid Chromatography coupled with High-Resolution Mass Spectrometry (LC-HRMS) was employed to analyze the chemical profile of polyphenolic compounds as the source of information for the characterization and classification of 306 commercial coffee samples. Coffee holds a distinguished position as one of the most widely popular beverages globally but also one of the most easily adulterated. Regrettably, in recent times, instances of coffee adulteration have been on the rise. Consequently, implementing rigorous quality control measures for coffee becomes imperative to guarantee its quality. The results obtained in this work confirm that the proposed chemical profiles serve as excellent descriptors for sample characterization and classification through the implementation of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving classification rates higher than 83.3% in PLS-DA validation. Moreover, the proposed LC-HRMS polyphenolic approach was employed to identify and measure adulteration levels in coffee samples using partial least squares (PLS) regression with prediction errors below 7.8%.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111770"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyphenolic profiling of coffee beverages by Liquid Chromatography-High-Resolution mass Spectrometry for classification and characterization\",\"authors\":\"Nerea Núñez , Javier Saurina , Oscar Núñez\",\"doi\":\"10.1016/j.microc.2024.111770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The importance of monitoring the presence of bioactive compounds as food attributes for sample classification and characterization is increasing. In this study, targeted Liquid Chromatography coupled with High-Resolution Mass Spectrometry (LC-HRMS) was employed to analyze the chemical profile of polyphenolic compounds as the source of information for the characterization and classification of 306 commercial coffee samples. Coffee holds a distinguished position as one of the most widely popular beverages globally but also one of the most easily adulterated. Regrettably, in recent times, instances of coffee adulteration have been on the rise. Consequently, implementing rigorous quality control measures for coffee becomes imperative to guarantee its quality. The results obtained in this work confirm that the proposed chemical profiles serve as excellent descriptors for sample characterization and classification through the implementation of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving classification rates higher than 83.3% in PLS-DA validation. Moreover, the proposed LC-HRMS polyphenolic approach was employed to identify and measure adulteration levels in coffee samples using partial least squares (PLS) regression with prediction errors below 7.8%.</div></div>\",\"PeriodicalId\":391,\"journal\":{\"name\":\"Microchemical Journal\",\"volume\":\"207 \",\"pages\":\"Article 111770\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchemical Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026265X24018824\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24018824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Polyphenolic profiling of coffee beverages by Liquid Chromatography-High-Resolution mass Spectrometry for classification and characterization
The importance of monitoring the presence of bioactive compounds as food attributes for sample classification and characterization is increasing. In this study, targeted Liquid Chromatography coupled with High-Resolution Mass Spectrometry (LC-HRMS) was employed to analyze the chemical profile of polyphenolic compounds as the source of information for the characterization and classification of 306 commercial coffee samples. Coffee holds a distinguished position as one of the most widely popular beverages globally but also one of the most easily adulterated. Regrettably, in recent times, instances of coffee adulteration have been on the rise. Consequently, implementing rigorous quality control measures for coffee becomes imperative to guarantee its quality. The results obtained in this work confirm that the proposed chemical profiles serve as excellent descriptors for sample characterization and classification through the implementation of principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving classification rates higher than 83.3% in PLS-DA validation. Moreover, the proposed LC-HRMS polyphenolic approach was employed to identify and measure adulteration levels in coffee samples using partial least squares (PLS) regression with prediction errors below 7.8%.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.