优化五乘五块预处理,在基于曲率的图像去模糊中实现高效的 GMRES 收敛

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Shahbaz Ahmad
{"title":"优化五乘五块预处理,在基于曲率的图像去模糊中实现高效的 GMRES 收敛","authors":"Shahbaz Ahmad","doi":"10.1016/j.camwa.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an enhanced preconditioning technique designed to expedite the convergence of Krylov subspace methods when dealing with non-linear systems of equations featuring a block five-by-five format. This scenario often arises in the context of cell centered finite difference discretizations applied to the mean curvature based image deblurring problem. A thorough spectral analysis of the preconditioned matrices reveals a favorable eigenvalue distribution, leading to accelerated convergence of preconditioned Generalized Minimal Residual (GMRES) methods. Furthermore, we present numerical experiments to showcase the effectiveness of this preconditioner when combined with the flexible GMRES solver for addressing non-linear systems of equations originating from a image deblurring problems. Codes can be obtained at <span><span>https://github.com/shahbaz1982/Preconditioning</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized five-by-five block preconditioning for efficient GMRES convergence in curvature-based image deblurring\",\"authors\":\"Shahbaz Ahmad\",\"doi\":\"10.1016/j.camwa.2024.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce an enhanced preconditioning technique designed to expedite the convergence of Krylov subspace methods when dealing with non-linear systems of equations featuring a block five-by-five format. This scenario often arises in the context of cell centered finite difference discretizations applied to the mean curvature based image deblurring problem. A thorough spectral analysis of the preconditioned matrices reveals a favorable eigenvalue distribution, leading to accelerated convergence of preconditioned Generalized Minimal Residual (GMRES) methods. Furthermore, we present numerical experiments to showcase the effectiveness of this preconditioner when combined with the flexible GMRES solver for addressing non-linear systems of equations originating from a image deblurring problems. Codes can be obtained at <span><span>https://github.com/shahbaz1982/Preconditioning</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004358\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004358","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种增强型预处理技术,旨在加快 Krylov 子空间方法在处理以块五乘五格式为特征的非线性方程组时的收敛速度。这种情况经常出现在基于平均曲率的图像去模糊问题的单元中心有限差分离散中。通过对预处理矩阵进行全面的频谱分析,我们发现了有利的特征值分布,从而加快了预处理广义最小残差(GMRES)方法的收敛速度。此外,我们还通过数值实验展示了该预处理方法与灵活的 GMRES 求解器相结合,在解决图像去模糊问题的非线性方程组时的有效性。代码可从 https://github.com/shahbaz1982/Preconditioning 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized five-by-five block preconditioning for efficient GMRES convergence in curvature-based image deblurring
We introduce an enhanced preconditioning technique designed to expedite the convergence of Krylov subspace methods when dealing with non-linear systems of equations featuring a block five-by-five format. This scenario often arises in the context of cell centered finite difference discretizations applied to the mean curvature based image deblurring problem. A thorough spectral analysis of the preconditioned matrices reveals a favorable eigenvalue distribution, leading to accelerated convergence of preconditioned Generalized Minimal Residual (GMRES) methods. Furthermore, we present numerical experiments to showcase the effectiveness of this preconditioner when combined with the flexible GMRES solver for addressing non-linear systems of equations originating from a image deblurring problems. Codes can be obtained at https://github.com/shahbaz1982/Preconditioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信