{"title":"三阶两步 Runge-Kutta-Chebyshev 方法","authors":"Andrew Moisa","doi":"10.1016/j.cam.2024.116291","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Third order two-step Runge–Kutta–Chebyshev methods\",\"authors\":\"Andrew Moisa\",\"doi\":\"10.1016/j.cam.2024.116291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Third order two-step Runge–Kutta–Chebyshev methods
The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.