Shaopeng Chang, Zhehong Li, Lixuan Liu, Chong Wang, Jing Wang, Anmin Nie, Fusheng Wen, Congpu Mu, Kun Zhai, Jianyong Xiang, Bochong Wang, Qing Fan, Tianyu Xue, Zhongyuan Liu
{"title":"用于胃癌诊断的 GeP 纳米生物传感器中的原子级缺陷工程","authors":"Shaopeng Chang, Zhehong Li, Lixuan Liu, Chong Wang, Jing Wang, Anmin Nie, Fusheng Wen, Congpu Mu, Kun Zhai, Jianyong Xiang, Bochong Wang, Qing Fan, Tianyu Xue, Zhongyuan Liu","doi":"10.1021/acsnano.4c08473","DOIUrl":null,"url":null,"abstract":"Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise <i>in situ</i> growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"56 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Level Defect Engineering in GeP Nanoflake Biosensors for Gastric Cancer Diagnosis\",\"authors\":\"Shaopeng Chang, Zhehong Li, Lixuan Liu, Chong Wang, Jing Wang, Anmin Nie, Fusheng Wen, Congpu Mu, Kun Zhai, Jianyong Xiang, Bochong Wang, Qing Fan, Tianyu Xue, Zhongyuan Liu\",\"doi\":\"10.1021/acsnano.4c08473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise <i>in situ</i> growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08473\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic-Level Defect Engineering in GeP Nanoflake Biosensors for Gastric Cancer Diagnosis
Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise in situ growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.