{"title":"边缘硫空位上电荷密度不同的钼镍双位上的醇异相羰基化反应","authors":"Qiao Yuan, Yating Gu, Weimiao Chen, Yue Zhang, Xiangen Song, Yangming Ding, Xingju Li, Lei Zhu, Zheng Jiang, Li Yan, Jing Ma, Yunjie Ding","doi":"10.1002/anie.202411632","DOIUrl":null,"url":null,"abstract":"Alcohols carbonylation is of great importance in industry but remains a challenge to abandon the usage of the halide additives and noble metals. Here we report the realization of direct alcohols heterogeneous carbonylation to carbonyl-containing chemicals, especially in methanol carbonylation, with a remarkable space-time-yield (STY) of 4.74 molacetyl/kgcat./h and a durable stability as long as 100 h on Ni@MoS2 catalyst. Mechanistic analysis reveals that the Mo-Ni dual sites localized at edge sulfur vacancies of Ni@MoS2 exhibit distinct charge density, which strongly activate CH3OH to break its C-O bond and non-dissociatively activate CO. Density functional theory calculations further suggest that the low charge density in Mo-Ni, the Ni site, could significantly lower the barrier for CO migration and nucleophilic attack of methoxy species, and finally leads to the rapid formation of acetyl products. Ni@MoS2 catalyst could also effectively realize the carbonylation of ethanol, n-propanol and n-butanol to their acyl products, which may demonstrate its universal application for alcohols carbonylation.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Carbonylation of Alcohols on Charge-Density-Distinct Mo-Ni Dual Sites Localized at Edge Sulfur Vacancies\",\"authors\":\"Qiao Yuan, Yating Gu, Weimiao Chen, Yue Zhang, Xiangen Song, Yangming Ding, Xingju Li, Lei Zhu, Zheng Jiang, Li Yan, Jing Ma, Yunjie Ding\",\"doi\":\"10.1002/anie.202411632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alcohols carbonylation is of great importance in industry but remains a challenge to abandon the usage of the halide additives and noble metals. Here we report the realization of direct alcohols heterogeneous carbonylation to carbonyl-containing chemicals, especially in methanol carbonylation, with a remarkable space-time-yield (STY) of 4.74 molacetyl/kgcat./h and a durable stability as long as 100 h on Ni@MoS2 catalyst. Mechanistic analysis reveals that the Mo-Ni dual sites localized at edge sulfur vacancies of Ni@MoS2 exhibit distinct charge density, which strongly activate CH3OH to break its C-O bond and non-dissociatively activate CO. Density functional theory calculations further suggest that the low charge density in Mo-Ni, the Ni site, could significantly lower the barrier for CO migration and nucleophilic attack of methoxy species, and finally leads to the rapid formation of acetyl products. Ni@MoS2 catalyst could also effectively realize the carbonylation of ethanol, n-propanol and n-butanol to their acyl products, which may demonstrate its universal application for alcohols carbonylation.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202411632\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411632","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
醇类羰基化在工业中具有重要意义,但放弃使用卤化物添加剂和贵金属仍是一项挑战。在此,我们报告了在 Ni@MoS2 催化剂上实现直接醇异相羰基化到含羰基化学品的过程,尤其是甲醇羰基化,其空间-时间-产量(STY)达到 4.74 molacetyl/kgcat./h,且持久稳定性长达 100 h。机理分析表明,定位于 Ni@MoS2 边缘硫空位的 Mo-Ni 双位点表现出独特的电荷密度,可强烈激活 CH3OH,使其断裂 C-O 键,并以非解离方式激活 CO。密度泛函理论计算进一步表明,Mo-Ni(即 Ni 位点)的低电荷密度可显著降低 CO 迁移和甲氧基亲核攻击的障碍,并最终导致乙酰产物的快速形成。Ni@MoS2 催化剂还能有效地实现乙醇、正丙醇和正丁醇羰基化成其酰基产物,这可能证明了其在醇羰基化方面的普遍应用。
Heterogeneous Carbonylation of Alcohols on Charge-Density-Distinct Mo-Ni Dual Sites Localized at Edge Sulfur Vacancies
Alcohols carbonylation is of great importance in industry but remains a challenge to abandon the usage of the halide additives and noble metals. Here we report the realization of direct alcohols heterogeneous carbonylation to carbonyl-containing chemicals, especially in methanol carbonylation, with a remarkable space-time-yield (STY) of 4.74 molacetyl/kgcat./h and a durable stability as long as 100 h on Ni@MoS2 catalyst. Mechanistic analysis reveals that the Mo-Ni dual sites localized at edge sulfur vacancies of Ni@MoS2 exhibit distinct charge density, which strongly activate CH3OH to break its C-O bond and non-dissociatively activate CO. Density functional theory calculations further suggest that the low charge density in Mo-Ni, the Ni site, could significantly lower the barrier for CO migration and nucleophilic attack of methoxy species, and finally leads to the rapid formation of acetyl products. Ni@MoS2 catalyst could also effectively realize the carbonylation of ethanol, n-propanol and n-butanol to their acyl products, which may demonstrate its universal application for alcohols carbonylation.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.