{"title":"尽量降低表面反应性以提高 H2 - H3 相变可逆性的电解质策略","authors":"J. Brandon Adamo and Arumugam Manthiram","doi":"10.1039/D4TA05216A","DOIUrl":null,"url":null,"abstract":"<p >High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO<small><sub>2</sub></small> cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO<small><sub>2</sub></small>F<small><sub>2</sub></small> additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2–H3 phase transition†\",\"authors\":\"J. Brandon Adamo and Arumugam Manthiram\",\"doi\":\"10.1039/D4TA05216A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO<small><sub>2</sub></small> cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO<small><sub>2</sub></small>F<small><sub>2</sub></small> additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05216a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05216a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2–H3 phase transition†
High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO2 cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO2F2 additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.