Huijuan Zhang, Wei Yang, Di Zhang, Hengci Tian, Renhao Ruan, Sen Hu, Yi Chen, Hejiu Hui, Yanhao Lin, Ross N. Mitchell, Di Zhang, Shitou Wu, Lihui Jia, Lixin Gu, Yangting Lin, XianHua Li, Fuyuan Wu
{"title":"嫦娥五号玄武岩揭示了长期减少的月球地幔","authors":"Huijuan Zhang, Wei Yang, Di Zhang, Hengci Tian, Renhao Ruan, Sen Hu, Yi Chen, Hejiu Hui, Yanhao Lin, Ross N. Mitchell, Di Zhang, Shitou Wu, Lihui Jia, Lixin Gu, Yangting Lin, XianHua Li, Fuyuan Wu","doi":"10.1038/s41467-024-52710-x","DOIUrl":null,"url":null,"abstract":"<p>The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (<i>f</i>O<sub>2</sub>) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang’e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average <i>f</i>O<sub>2</sub> of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6–3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"35 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term reduced lunar mantle revealed by Chang’e-5 basalt\",\"authors\":\"Huijuan Zhang, Wei Yang, Di Zhang, Hengci Tian, Renhao Ruan, Sen Hu, Yi Chen, Hejiu Hui, Yanhao Lin, Ross N. Mitchell, Di Zhang, Shitou Wu, Lihui Jia, Lixin Gu, Yangting Lin, XianHua Li, Fuyuan Wu\",\"doi\":\"10.1038/s41467-024-52710-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (<i>f</i>O<sub>2</sub>) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang’e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average <i>f</i>O<sub>2</sub> of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6–3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52710-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52710-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Long-term reduced lunar mantle revealed by Chang’e-5 basalt
The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (fO2) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang’e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average fO2 of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6–3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.