根据配位环境调整单原子铜位点的电子结构,实现对氨的高效硝酸盐电化学还原

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianchi Huang, Taiyu Liang, Jiao You, Qihua Huo, Shuai Qi, Jingwen Zhao, Na Meng, Jinglian Liao, Chunyan Shang, Hengpan Yang, Qi Hu and Chuanxin He
{"title":"根据配位环境调整单原子铜位点的电子结构,实现对氨的高效硝酸盐电化学还原","authors":"Tianchi Huang, Taiyu Liang, Jiao You, Qihua Huo, Shuai Qi, Jingwen Zhao, Na Meng, Jinglian Liao, Chunyan Shang, Hengpan Yang, Qi Hu and Chuanxin He","doi":"10.1039/D4EE02746A","DOIUrl":null,"url":null,"abstract":"<p >Continuously and finely tuning the electronic structure of metal active sites is essential to maximize the nitrate reduction reaction (NO<small><sub>3</sub></small><small><sup>−</sup></small>RR) performance towards ammonia (NH<small><sub>3</sub></small>) and elucidate the reaction mechanism. Here, we employ single atomic Cu–N–C as a model system and develop a robust strategy to finely tailor the electronic structure of Cu <em>via</em> engineering of both the first and second coordination shells (CSs) with B atoms. It is found that the first and second CS modification of B induces two opposite effects: the first modification leads to tension strains of Cu–N bonds and the decreased valence state of Cu, whereas the second CS modification leads to compressive strains and the increased valence state. Thanks to the bidirectional regulatory mechanism induced by B, we continuously tune the electronic structure of Cu to reach the top of adsorption volcano curves, thereby concurrently reducing the energy barrier of the NO<small><sub>3</sub></small><small><sup>−</sup></small>RR and water dissociation step. Consequently, the optimized Cu–N<small><sub>4</sub></small>B<small><sub>2</sub></small> catalyst displays superior NO<small><sub>3</sub></small><small><sup>−</sup></small>RR performance to other Cu–N–C catalysts. Clearly, this work offers a guideline to design efficient NO<small><sub>3</sub></small><small><sup>−</sup></small>RR electrocatalysts <em>via</em> finely tuning metal electronic structures.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination environment-tailored electronic structure of single atomic copper sites for efficient electrochemical nitrate reduction toward ammonia†\",\"authors\":\"Tianchi Huang, Taiyu Liang, Jiao You, Qihua Huo, Shuai Qi, Jingwen Zhao, Na Meng, Jinglian Liao, Chunyan Shang, Hengpan Yang, Qi Hu and Chuanxin He\",\"doi\":\"10.1039/D4EE02746A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Continuously and finely tuning the electronic structure of metal active sites is essential to maximize the nitrate reduction reaction (NO<small><sub>3</sub></small><small><sup>−</sup></small>RR) performance towards ammonia (NH<small><sub>3</sub></small>) and elucidate the reaction mechanism. Here, we employ single atomic Cu–N–C as a model system and develop a robust strategy to finely tailor the electronic structure of Cu <em>via</em> engineering of both the first and second coordination shells (CSs) with B atoms. It is found that the first and second CS modification of B induces two opposite effects: the first modification leads to tension strains of Cu–N bonds and the decreased valence state of Cu, whereas the second CS modification leads to compressive strains and the increased valence state. Thanks to the bidirectional regulatory mechanism induced by B, we continuously tune the electronic structure of Cu to reach the top of adsorption volcano curves, thereby concurrently reducing the energy barrier of the NO<small><sub>3</sub></small><small><sup>−</sup></small>RR and water dissociation step. Consequently, the optimized Cu–N<small><sub>4</sub></small>B<small><sub>2</sub></small> catalyst displays superior NO<small><sub>3</sub></small><small><sup>−</sup></small>RR performance to other Cu–N–C catalysts. Clearly, this work offers a guideline to design efficient NO<small><sub>3</sub></small><small><sup>−</sup></small>RR electrocatalysts <em>via</em> finely tuning metal electronic structures.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02746a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02746a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要最大限度地提高硝酸盐还原反应(NO3-RR)对氨(NH3)的性能并阐明反应机理,就必须持续、精细地调整金属活性位点的电子结构。在此,我们采用单原子 Cu-N-C 作为模型系统,并开发出一种稳健的策略,通过用 B 原子对第一和第二配位层(CS)进行工程设计来微调 Cu 的电子结构。研究发现,B 原子的第一和第二配位层修饰会产生两种相反的效应:第一种修饰会导致 Cu-N 键的拉伸应变和 Cu 的价态降低,而第二种 CS 修饰则会导致压缩应变和价态升高。由于 B 诱导的双向调节机制,我们不断调整 Cu 的电子结构,使其达到吸附火山曲线的顶端,从而同时降低了 NO3-RR 和水解离步骤的能垒。因此,与其他 Cu-N-C 催化剂相比,优化后的 Cu-N4B2 催化剂具有更优异的 NO3-RR 性能。显然,这项工作为通过微调金属电子结构设计高效的 NO3-RR 电催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coordination environment-tailored electronic structure of single atomic copper sites for efficient electrochemical nitrate reduction toward ammonia†

Coordination environment-tailored electronic structure of single atomic copper sites for efficient electrochemical nitrate reduction toward ammonia†

Continuously and finely tuning the electronic structure of metal active sites is essential to maximize the nitrate reduction reaction (NO3RR) performance towards ammonia (NH3) and elucidate the reaction mechanism. Here, we employ single atomic Cu–N–C as a model system and develop a robust strategy to finely tailor the electronic structure of Cu via engineering of both the first and second coordination shells (CSs) with B atoms. It is found that the first and second CS modification of B induces two opposite effects: the first modification leads to tension strains of Cu–N bonds and the decreased valence state of Cu, whereas the second CS modification leads to compressive strains and the increased valence state. Thanks to the bidirectional regulatory mechanism induced by B, we continuously tune the electronic structure of Cu to reach the top of adsorption volcano curves, thereby concurrently reducing the energy barrier of the NO3RR and water dissociation step. Consequently, the optimized Cu–N4B2 catalyst displays superior NO3RR performance to other Cu–N–C catalysts. Clearly, this work offers a guideline to design efficient NO3RR electrocatalysts via finely tuning metal electronic structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信