用于皮肤病治疗的高强度聚焦超声线性阵列和系统

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Juhwan Kim , Jinwoo Kim , Duk Kyu Lee , Eui-Ji Shin , Jin Ho Chang
{"title":"用于皮肤病治疗的高强度聚焦超声线性阵列和系统","authors":"Juhwan Kim ,&nbsp;Jinwoo Kim ,&nbsp;Duk Kyu Lee ,&nbsp;Eui-Ji Shin ,&nbsp;Jin Ho Chang","doi":"10.1016/j.ultras.2024.107477","DOIUrl":null,"url":null,"abstract":"<div><div>Dermatological lesions are typically located just a few millimeters below the surface of the skin, which constrains the efficacy of optical-based therapeutic methods such as photothermal and photodynamic therapy due to limited therapeutic depth caused by optical scattering. As an alternative, high-intensity focused ultrasound (HIFU) has been explored for its potential to treat a variety of dermatological conditions because it offers greater flexibility in terms of treatment depth. Since dermatological lesions have a small thickness ranging from 1.5 to 2.0 mm, high-frequency ultrasound (3–10 MHz or higher) is preferred as the focal area is proportional to the operating frequency. However, due to the difficulty in fabricating HIFU array transducers at this frequency range, the majority of HIFU treatments for dermatology rely on single element transducers. Despite the advantages of HIFU, single-element-based HIFU systems are limited in prevalent use for dermatology treatment due to their fixed focal length and mechanical movement for treatment, which can be time-consuming and unsuitable for treating multiple lesions. To address this, we present a newly developed HIFU linear array and 128-channel driving electronics specifically designed for dermatology treatment. This array consists of 128 elements, has a center frequency of 3.7 MHz, an elevation focal length of 28 mm, and an F-number of 1.27 in the elevation direction. The array has a footprint of 71.6 mm by 22 mm. Experiments using a tissue-mimicking phantom have demonstrated that the HIFU linear array and system are capable of transmitting sufficient ultrasound energy to create coagulation inside the phantom.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"145 ","pages":"Article 107477"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Intensity focused ultrasound linear array and system for dermatology treatment\",\"authors\":\"Juhwan Kim ,&nbsp;Jinwoo Kim ,&nbsp;Duk Kyu Lee ,&nbsp;Eui-Ji Shin ,&nbsp;Jin Ho Chang\",\"doi\":\"10.1016/j.ultras.2024.107477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dermatological lesions are typically located just a few millimeters below the surface of the skin, which constrains the efficacy of optical-based therapeutic methods such as photothermal and photodynamic therapy due to limited therapeutic depth caused by optical scattering. As an alternative, high-intensity focused ultrasound (HIFU) has been explored for its potential to treat a variety of dermatological conditions because it offers greater flexibility in terms of treatment depth. Since dermatological lesions have a small thickness ranging from 1.5 to 2.0 mm, high-frequency ultrasound (3–10 MHz or higher) is preferred as the focal area is proportional to the operating frequency. However, due to the difficulty in fabricating HIFU array transducers at this frequency range, the majority of HIFU treatments for dermatology rely on single element transducers. Despite the advantages of HIFU, single-element-based HIFU systems are limited in prevalent use for dermatology treatment due to their fixed focal length and mechanical movement for treatment, which can be time-consuming and unsuitable for treating multiple lesions. To address this, we present a newly developed HIFU linear array and 128-channel driving electronics specifically designed for dermatology treatment. This array consists of 128 elements, has a center frequency of 3.7 MHz, an elevation focal length of 28 mm, and an F-number of 1.27 in the elevation direction. The array has a footprint of 71.6 mm by 22 mm. Experiments using a tissue-mimicking phantom have demonstrated that the HIFU linear array and system are capable of transmitting sufficient ultrasound energy to create coagulation inside the phantom.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"145 \",\"pages\":\"Article 107477\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002403\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002403","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

皮肤病的病灶通常位于皮肤表面下几毫米处,这就限制了光热疗法和光动力疗法等基于光学的治疗方法的疗效,因为光学散射导致治疗深度有限。作为一种替代方法,高强度聚焦超声(HIFU)因其在治疗深度方面具有更大的灵活性,已被用于治疗各种皮肤病。由于皮肤病变的厚度较小,从 1.5 毫米到 2.0 毫米不等,因此首选高频超声(3-10 兆赫或更高),因为病灶面积与工作频率成正比。然而,由于在这一频率范围内很难制造 HIFU 阵列换能器,皮肤科的大多数 HIFU 治疗都依赖于单元件换能器。尽管 HIFU 有很多优点,但基于单元件的 HIFU 系统在皮肤科治疗中的普遍应用受到限制,因为它们的焦距固定,治疗时需要机械运动,既费时又不适合治疗多处病变。为了解决这个问题,我们提出了一种新开发的 HIFU 线性阵列和 128 通道驱动电子设备,专为皮肤病治疗而设计。该阵列由 128 个元件组成,中心频率为 3.7 MHz,仰角焦距为 28 mm,仰角方向的 F 值为 1.27。阵列占地面积为 71.6 毫米 x 22 毫米。使用组织模拟模型进行的实验表明,HIFU 线性阵列和系统能够传输足够的超声能量,在模型内部产生凝固作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Intensity focused ultrasound linear array and system for dermatology treatment
Dermatological lesions are typically located just a few millimeters below the surface of the skin, which constrains the efficacy of optical-based therapeutic methods such as photothermal and photodynamic therapy due to limited therapeutic depth caused by optical scattering. As an alternative, high-intensity focused ultrasound (HIFU) has been explored for its potential to treat a variety of dermatological conditions because it offers greater flexibility in terms of treatment depth. Since dermatological lesions have a small thickness ranging from 1.5 to 2.0 mm, high-frequency ultrasound (3–10 MHz or higher) is preferred as the focal area is proportional to the operating frequency. However, due to the difficulty in fabricating HIFU array transducers at this frequency range, the majority of HIFU treatments for dermatology rely on single element transducers. Despite the advantages of HIFU, single-element-based HIFU systems are limited in prevalent use for dermatology treatment due to their fixed focal length and mechanical movement for treatment, which can be time-consuming and unsuitable for treating multiple lesions. To address this, we present a newly developed HIFU linear array and 128-channel driving electronics specifically designed for dermatology treatment. This array consists of 128 elements, has a center frequency of 3.7 MHz, an elevation focal length of 28 mm, and an F-number of 1.27 in the elevation direction. The array has a footprint of 71.6 mm by 22 mm. Experiments using a tissue-mimicking phantom have demonstrated that the HIFU linear array and system are capable of transmitting sufficient ultrasound energy to create coagulation inside the phantom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信