非次模化约束条件下的非次模化函数最大化近似算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyan Lai, Yishuo Shi
{"title":"非次模化约束条件下的非次模化函数最大化近似算法","authors":"Xiaoyan Lai,&nbsp;Yishuo Shi","doi":"10.1016/j.dam.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation algorithm of maximizing non-submodular functions under non-submodular constraint\",\"authors\":\"Xiaoyan Lai,&nbsp;Yishuo Shi\",\"doi\":\"10.1016/j.dam.2024.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如今,在Knapsack约束或Cardinality约束下最大化非负和非次模态目标函数的研究已经非常深入。然而,很少有人研究非次模化约束下的非次模化目标函数。而这种情况在实际应用中很多,如流行病传播、传感器安置和特征选择问题等。本文研究了非次模化约束下的非次模化目标函数最大化问题。基于非次模化约束,我们讨论了目标函数最大化的一些特定属性,其中包括负属性,然后通过贪婪算法得到了相应的近似比率。更重要的是,当约束条件变得严格时,这些近似比率可以得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation algorithm of maximizing non-submodular functions under non-submodular constraint
Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信