利用比率荧光传感器 RhB@Zn-MOF 监测复杂基质中的高灵敏度和高选择性 L-乳酸盐

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Bo Jing, Xinke Xu, Jingze Wang, Changyan Sun, Wenjun Li, Zhidong Chang
{"title":"利用比率荧光传感器 RhB@Zn-MOF 监测复杂基质中的高灵敏度和高选择性 L-乳酸盐","authors":"Bo Jing,&nbsp;Xinke Xu,&nbsp;Jingze Wang,&nbsp;Changyan Sun,&nbsp;Wenjun Li,&nbsp;Zhidong Chang","doi":"10.1016/j.jece.2024.114233","DOIUrl":null,"url":null,"abstract":"<div><div>L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114233"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive and selective L-lactate monitoring in complex matrices with a ratiometric fluorescent sensor RhB@Zn-MOF\",\"authors\":\"Bo Jing,&nbsp;Xinke Xu,&nbsp;Jingze Wang,&nbsp;Changyan Sun,&nbsp;Wenjun Li,&nbsp;Zhidong Chang\",\"doi\":\"10.1016/j.jece.2024.114233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114233\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023649\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023649","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在临床诊断和食品质量评估中,L-乳酸盐是一种重要的生物标志物。本研究介绍了一种新型比率荧光传感器 RhB@Zn-MOF,该传感器专门设计用于灵敏、选择性地检测 L-乳酸盐。通过在 Zn-MOF 中策略性地加入罗丹明 B (RhB),合成了 RhB@Zn-MOF,该传感器具有双发射特性,基于竞争性吸收机制,可有效区分牛奶和汗液等复杂生物和食品基质中的 L-乳酸盐。值得注意的是,该传感器实现了 0.091 μM 的低检测限,并在不同条件下表现出优异的稳定性和重现性。此外,该传感器与智能手机技术的整合实现了快速、实时的分析,展示了在运动医学、临床环境和食品工业中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive and selective L-lactate monitoring in complex matrices with a ratiometric fluorescent sensor RhB@Zn-MOF
L-lactate is an essential biomarker in clinical diagnostics and food quality assessment. This study introduces a novel ratiometric fluorescence sensor, RhB@Zn-MOF, which was specifically designed for the sensitive and selective detection of L-lactate. Through the strategic incorporation of Rhodamine B (RhB) into Zn-MOF, RhB@Zn-MOF was synthesized, exhibiting dual-emission properties and could effectively distinguish L-lactate in complex biological and food matrices such as milk and sweat based on the competitive absorption mechanism. Notably, the sensor achieves a low detection limit of 0.091 μM and demonstrates excellent stability and reproducibility in varied conditions. Furthermore, the integration of the sensor with smartphone technology enables rapid, real-time analysis, showcasing potential applications in sports medicine, clinical environments, and the food industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信