论某些高阶线性常微分方程形式解的伯累尔求和性

IF 2.4 2区 数学 Q1 MATHEMATICS
Gergő Nemes
{"title":"论某些高阶线性常微分方程形式解的伯累尔求和性","authors":"Gergő Nemes","doi":"10.1016/j.jde.2024.09.041","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a class of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order linear ordinary differential equations with a large parameter <em>u</em>. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of <em>u</em>. We demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter <em>u</em> in large, unbounded domains of the independent variable. We establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, we show that the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to an <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order Airy-type equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations\",\"authors\":\"Gergő Nemes\",\"doi\":\"10.1016/j.jde.2024.09.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a class of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order linear ordinary differential equations with a large parameter <em>u</em>. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of <em>u</em>. We demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter <em>u</em> in large, unbounded domains of the independent variable. We establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, we show that the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to an <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order Airy-type equation.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006260\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006260","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类具有大参数 u 的 n 次阶线性常微分方程。这些方程的解析解可以用 u 的降幂(发散)形式数列来描述。我们证明,给定方程势函数的温和条件,形式解在自变量的大无界域中关于参数 u 是伯尔可求和的。我们确定,形式级数展开可作为关于自变量的渐近展开,与 Borel 重求和精确解一致。此外,我们还证明了精确解可以用参数中的阶乘级数来表示,并且这些展开在半平面上收敛,与自变量保持一致。为了说明我们的理论,我们将其应用于 n 次阶 Airy 型方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations
We consider a class of nth-order linear ordinary differential equations with a large parameter u. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of u. We demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter u in large, unbounded domains of the independent variable. We establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, we show that the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to an nth-order Airy-type equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信