{"title":"制备具有增强疏水性的核壳结构 Y@VTMS-DVB 复合材料,用于在潮湿环境下捕获甲苯","authors":"Chang Lu, Xi Zhang, Pengfei Zhang, Lingling Ren, Nengjie Feng, Hui Wan, Guofeng Guan","doi":"10.1016/j.micromeso.2024.113350","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolite Y serves as an effective adsorbent for VOCs capture due to its ordered porous structure, exceptional thermal stability, chemical resistance and fine-tune key properties. However, the hydrophilicity caused by the low SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio seriously limits its industrial application, especially in humid environments. In this work, a series of core-shell composites Y@VTMS-DVB<sub>n</sub> were prepared through surface grafting and copolymerization. A variety of characterizations were utilized to study the structural and morphological changes of the prepared samples. The dynamic breakthrough adsorption experiment showed that the toluene uptake was significantly improved from 1.77 mg/g to 53.09 mg/g under 30 % relative humidity. Moreover, the core-shell composite exhibited excellent regeneration properties, the adsorption capacity remained 90 % under wet conditions after 6 cycles of regeneration. Adsorption kinetic analysis revealed that the adsorption behavior of toluene on the prepared adsorbents was primarily physical adsorption. These results show that the core-shell composite is a promising candidate for VOCs removal in industrial application.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113350"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of core-shell structural Y@VTMS-DVB composites with enhanced hydrophobicity for toluene capture under humid environment\",\"authors\":\"Chang Lu, Xi Zhang, Pengfei Zhang, Lingling Ren, Nengjie Feng, Hui Wan, Guofeng Guan\",\"doi\":\"10.1016/j.micromeso.2024.113350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zeolite Y serves as an effective adsorbent for VOCs capture due to its ordered porous structure, exceptional thermal stability, chemical resistance and fine-tune key properties. However, the hydrophilicity caused by the low SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio seriously limits its industrial application, especially in humid environments. In this work, a series of core-shell composites Y@VTMS-DVB<sub>n</sub> were prepared through surface grafting and copolymerization. A variety of characterizations were utilized to study the structural and morphological changes of the prepared samples. The dynamic breakthrough adsorption experiment showed that the toluene uptake was significantly improved from 1.77 mg/g to 53.09 mg/g under 30 % relative humidity. Moreover, the core-shell composite exhibited excellent regeneration properties, the adsorption capacity remained 90 % under wet conditions after 6 cycles of regeneration. Adsorption kinetic analysis revealed that the adsorption behavior of toluene on the prepared adsorbents was primarily physical adsorption. These results show that the core-shell composite is a promising candidate for VOCs removal in industrial application.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"381 \",\"pages\":\"Article 113350\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138718112400372X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112400372X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Fabrication of core-shell structural Y@VTMS-DVB composites with enhanced hydrophobicity for toluene capture under humid environment
Zeolite Y serves as an effective adsorbent for VOCs capture due to its ordered porous structure, exceptional thermal stability, chemical resistance and fine-tune key properties. However, the hydrophilicity caused by the low SiO2/Al2O3 ratio seriously limits its industrial application, especially in humid environments. In this work, a series of core-shell composites Y@VTMS-DVBn were prepared through surface grafting and copolymerization. A variety of characterizations were utilized to study the structural and morphological changes of the prepared samples. The dynamic breakthrough adsorption experiment showed that the toluene uptake was significantly improved from 1.77 mg/g to 53.09 mg/g under 30 % relative humidity. Moreover, the core-shell composite exhibited excellent regeneration properties, the adsorption capacity remained 90 % under wet conditions after 6 cycles of regeneration. Adsorption kinetic analysis revealed that the adsorption behavior of toluene on the prepared adsorbents was primarily physical adsorption. These results show that the core-shell composite is a promising candidate for VOCs removal in industrial application.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.