关于游戏色度数与色度数最大差值的图形

IF 0.7 3区 数学 Q2 MATHEMATICS
Lawrence Hollom
{"title":"关于游戏色度数与色度数最大差值的图形","authors":"Lawrence Hollom","doi":"10.1016/j.disc.2024.114271","DOIUrl":null,"url":null,"abstract":"<div><div>In the vertex colouring game on a graph <em>G</em>, Maker and Breaker alternately colour vertices of <em>G</em> from a palette of <em>k</em> colours, with no two adjacent vertices allowed the same colour. Maker seeks to colour the whole graph while Breaker seeks to make some vertex impossible to colour. The game chromatic number of <em>G</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>g</mtext></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number <em>k</em> of colours for which Maker has a winning strategy for the vertex colouring game.</div><div>Matsumoto proved in 2019 that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>g</mtext></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>−</mo><mn>1</mn></math></span>, and conjectured that the only equality cases are some graphs of small order and the Turán graph <span><math><mi>T</mi><mo>(</mo><mn>2</mn><mi>r</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>. We resolve this conjecture in the affirmative by considering a modification of the vertex colouring game wherein Breaker may remove a vertex instead of colouring it.</div><div>Matsumoto further asked whether a similar result could be proved for the vertex marking game, and we provide an example to show that no such nontrivial result can exist.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114271"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On graphs with maximum difference between game chromatic number and chromatic number\",\"authors\":\"Lawrence Hollom\",\"doi\":\"10.1016/j.disc.2024.114271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the vertex colouring game on a graph <em>G</em>, Maker and Breaker alternately colour vertices of <em>G</em> from a palette of <em>k</em> colours, with no two adjacent vertices allowed the same colour. Maker seeks to colour the whole graph while Breaker seeks to make some vertex impossible to colour. The game chromatic number of <em>G</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>g</mtext></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number <em>k</em> of colours for which Maker has a winning strategy for the vertex colouring game.</div><div>Matsumoto proved in 2019 that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>g</mtext></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>−</mo><mn>1</mn></math></span>, and conjectured that the only equality cases are some graphs of small order and the Turán graph <span><math><mi>T</mi><mo>(</mo><mn>2</mn><mi>r</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>. We resolve this conjecture in the affirmative by considering a modification of the vertex colouring game wherein Breaker may remove a vertex instead of colouring it.</div><div>Matsumoto further asked whether a similar result could be proved for the vertex marking game, and we provide an example to show that no such nontrivial result can exist.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114271\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在图 G 的顶点着色游戏中,制造者和破坏者交替从 k 种颜色中为 G 的顶点着色,相邻两个顶点不能着相同的颜色。制造者希望给整个图着色,而破坏者则希望让某个顶点无法着色。松本在 2019 年证明了χg(G)-χ(G)≤⌊n/2⌋-1,并猜想唯一相等的情况是一些小阶图和图兰图 T(2r,r)。我们考虑了顶点着色博弈的一种修改,即破坏者可以移除一个顶点而不是给它着色,从而肯定地解决了这一猜想。松本进一步询问是否可以为顶点标记博弈证明类似的结果,我们举例说明不可能存在这种非难结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On graphs with maximum difference between game chromatic number and chromatic number
In the vertex colouring game on a graph G, Maker and Breaker alternately colour vertices of G from a palette of k colours, with no two adjacent vertices allowed the same colour. Maker seeks to colour the whole graph while Breaker seeks to make some vertex impossible to colour. The game chromatic number of G, χg(G), is the minimum number k of colours for which Maker has a winning strategy for the vertex colouring game.
Matsumoto proved in 2019 that χg(G)χ(G)n/21, and conjectured that the only equality cases are some graphs of small order and the Turán graph T(2r,r). We resolve this conjecture in the affirmative by considering a modification of the vertex colouring game wherein Breaker may remove a vertex instead of colouring it.
Matsumoto further asked whether a similar result could be proved for the vertex marking game, and we provide an example to show that no such nontrivial result can exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信