基于等距分析和密度分布场的壳体结构形状和拓扑结构同步优化方法

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhao Zhang , Hao Yu , Hengan Wu , Qingpeng Chen
{"title":"基于等距分析和密度分布场的壳体结构形状和拓扑结构同步优化方法","authors":"Zhao Zhang ,&nbsp;Hao Yu ,&nbsp;Hengan Wu ,&nbsp;Qingpeng Chen","doi":"10.1016/j.compstruc.2024.107550","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel simultaneous shape and topology optimization approach of shell structures based on isogeometric analysis and density distribution field. In the optimization approach, Non-Uniform Rational B-Splines (NURBS) technology is utilized to describe the geometry and material distribution of the shell structures. The coordinates and densities of the NURBS control points are utilized as design variables to simultaneously optimize the shape and topology of shell structures. The proposed approach offers significant advantages, including ease of implementation, seamless integration with CAD models, high efficiency, and smooth, clear boundaries. Two representative examples are performed to demonstrate the effectiveness of the proposed approach. The optimized configurations are compared with other works and commercial software results.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"305 ","pages":"Article 107550"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simultaneous shape and topology optimization approach of shell structures based on isogeometric analysis and density distribution field\",\"authors\":\"Zhao Zhang ,&nbsp;Hao Yu ,&nbsp;Hengan Wu ,&nbsp;Qingpeng Chen\",\"doi\":\"10.1016/j.compstruc.2024.107550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel simultaneous shape and topology optimization approach of shell structures based on isogeometric analysis and density distribution field. In the optimization approach, Non-Uniform Rational B-Splines (NURBS) technology is utilized to describe the geometry and material distribution of the shell structures. The coordinates and densities of the NURBS control points are utilized as design variables to simultaneously optimize the shape and topology of shell structures. The proposed approach offers significant advantages, including ease of implementation, seamless integration with CAD models, high efficiency, and smooth, clear boundaries. Two representative examples are performed to demonstrate the effectiveness of the proposed approach. The optimized configurations are compared with other works and commercial software results.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"305 \",\"pages\":\"Article 107550\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002797\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002797","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于等几何分析和密度分布场的新型壳体结构同步形状和拓扑优化方法。在优化方法中,非均匀有理 B-样条曲线(NURBS)技术被用来描述壳体结构的几何形状和材料分布。NURBS 控制点的坐标和密度被用作设计变量,以同时优化壳体结构的形状和拓扑结构。所提出的方法具有显著的优势,包括易于实施、与 CAD 模型无缝集成、效率高以及边界平滑清晰。我们通过两个具有代表性的实例来证明所提方法的有效性。优化后的配置与其他作品和商业软件的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simultaneous shape and topology optimization approach of shell structures based on isogeometric analysis and density distribution field
This paper presents a novel simultaneous shape and topology optimization approach of shell structures based on isogeometric analysis and density distribution field. In the optimization approach, Non-Uniform Rational B-Splines (NURBS) technology is utilized to describe the geometry and material distribution of the shell structures. The coordinates and densities of the NURBS control points are utilized as design variables to simultaneously optimize the shape and topology of shell structures. The proposed approach offers significant advantages, including ease of implementation, seamless integration with CAD models, high efficiency, and smooth, clear boundaries. Two representative examples are performed to demonstrate the effectiveness of the proposed approach. The optimized configurations are compared with other works and commercial software results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信