Jianqun Bao , Suisui Wang , Jiaxing Wu , Fan Fan , Yajun Wang , Dan Luo , Guiyuan Jiang , Wenqing Yao
{"title":"通过巨型内置电场增强 Z 型 BiVO4 异相结的光催化活性","authors":"Jianqun Bao , Suisui Wang , Jiaxing Wu , Fan Fan , Yajun Wang , Dan Luo , Guiyuan Jiang , Wenqing Yao","doi":"10.1016/j.surfin.2024.105116","DOIUrl":null,"url":null,"abstract":"<div><div>Built-in electric field (IEF) can improve photocatalytic efficiency by promoting charge separation and transfer. Herein, a Z-scheme BiVO<sub>4</sub> heterophase junction with giant IEF was successfully constructed. By changing the pH value of the precursor solution, the ratio of monoclinic octahedral BiVO<sub>4</sub> (m-BVO) to tetragonal microsphere BiVO<sub>4</sub> (t-BVO) is regulated to form a heterophase junction (mt-BVO), so as to regulate the IEF intensity. When pH = 0.5, a large number of pores were formed at the interface of the two forms in mt-BVO-35%m, so it has a larger specific surface area. mt-BVO-35%m has optimal photocatalytic tetracycline degradation activity. Under visible light irradiation, its reaction rate constant <em>k</em> is shown to be 3 times higher than that of pure m-BVO, and the TOC removal rate has increased from 12 % to 36 %. Through characterization, it can be proved that the IEF strength of mt-BVO-35%m is 11.86 times that of m-BVO. The significantly improved activity is mainly attributed to the presence of a giant IEF between m-BVO and t-BVO. The IEF drives the photogenerated electrons to transfer from the CB of t-BiVO<sub>4</sub> to the VB of m-BiVO<sub>4</sub>, which greatly enhances the separation and transfer of photogenerated charge carriers. Moreover, a mechanism of Z-scheme charges transfer pathway in the mt-BVO-35%m heterophase junction was also revealed.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105116"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic activity of Z-scheme BiVO4 heterophase junction via giant built-in electric field\",\"authors\":\"Jianqun Bao , Suisui Wang , Jiaxing Wu , Fan Fan , Yajun Wang , Dan Luo , Guiyuan Jiang , Wenqing Yao\",\"doi\":\"10.1016/j.surfin.2024.105116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Built-in electric field (IEF) can improve photocatalytic efficiency by promoting charge separation and transfer. Herein, a Z-scheme BiVO<sub>4</sub> heterophase junction with giant IEF was successfully constructed. By changing the pH value of the precursor solution, the ratio of monoclinic octahedral BiVO<sub>4</sub> (m-BVO) to tetragonal microsphere BiVO<sub>4</sub> (t-BVO) is regulated to form a heterophase junction (mt-BVO), so as to regulate the IEF intensity. When pH = 0.5, a large number of pores were formed at the interface of the two forms in mt-BVO-35%m, so it has a larger specific surface area. mt-BVO-35%m has optimal photocatalytic tetracycline degradation activity. Under visible light irradiation, its reaction rate constant <em>k</em> is shown to be 3 times higher than that of pure m-BVO, and the TOC removal rate has increased from 12 % to 36 %. Through characterization, it can be proved that the IEF strength of mt-BVO-35%m is 11.86 times that of m-BVO. The significantly improved activity is mainly attributed to the presence of a giant IEF between m-BVO and t-BVO. The IEF drives the photogenerated electrons to transfer from the CB of t-BiVO<sub>4</sub> to the VB of m-BiVO<sub>4</sub>, which greatly enhances the separation and transfer of photogenerated charge carriers. Moreover, a mechanism of Z-scheme charges transfer pathway in the mt-BVO-35%m heterophase junction was also revealed.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"54 \",\"pages\":\"Article 105116\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012720\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced photocatalytic activity of Z-scheme BiVO4 heterophase junction via giant built-in electric field
Built-in electric field (IEF) can improve photocatalytic efficiency by promoting charge separation and transfer. Herein, a Z-scheme BiVO4 heterophase junction with giant IEF was successfully constructed. By changing the pH value of the precursor solution, the ratio of monoclinic octahedral BiVO4 (m-BVO) to tetragonal microsphere BiVO4 (t-BVO) is regulated to form a heterophase junction (mt-BVO), so as to regulate the IEF intensity. When pH = 0.5, a large number of pores were formed at the interface of the two forms in mt-BVO-35%m, so it has a larger specific surface area. mt-BVO-35%m has optimal photocatalytic tetracycline degradation activity. Under visible light irradiation, its reaction rate constant k is shown to be 3 times higher than that of pure m-BVO, and the TOC removal rate has increased from 12 % to 36 %. Through characterization, it can be proved that the IEF strength of mt-BVO-35%m is 11.86 times that of m-BVO. The significantly improved activity is mainly attributed to the presence of a giant IEF between m-BVO and t-BVO. The IEF drives the photogenerated electrons to transfer from the CB of t-BiVO4 to the VB of m-BiVO4, which greatly enhances the separation and transfer of photogenerated charge carriers. Moreover, a mechanism of Z-scheme charges transfer pathway in the mt-BVO-35%m heterophase junction was also revealed.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)