{"title":"用于检测荷斯坦奶牛发情和妊娠的红外测温仪","authors":"Borhan Shokrollahi , Salim Morammazi , Kavous Dananiani , Hamidreza Tarjoman","doi":"10.1016/j.jtherbio.2024.103972","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p < 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p < 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p < 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 103972"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared thermometry for detecting estrus and pregnancy in Holstein cows\",\"authors\":\"Borhan Shokrollahi , Salim Morammazi , Kavous Dananiani , Hamidreza Tarjoman\",\"doi\":\"10.1016/j.jtherbio.2024.103972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p < 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p < 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p < 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.</div></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"125 \",\"pages\":\"Article 103972\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001906\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Infrared thermometry for detecting estrus and pregnancy in Holstein cows
Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p < 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p < 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p < 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles