{"title":"利用符号方法对层状梁进行几何非线性分析","authors":"U. Rodman , D. Zupan , T. Šuštar , J. Korelc","doi":"10.1016/j.compstruct.2024.118583","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel layered spatial beam model with discrete connections between layers, developed to accurately capture large displacements and rotations as well as finite strains. The formulation is characterized by simplicity, robustness and compatibility with automatic code generation, making it suitable for various applications. Key features of the model include the use of a piecewise constant strain field, the inclusion of discrete unknowns such as strains and stress resultants, and the efficient numerical implementation using the automatic code generation. The discrete connections between the layers of the model enable an efficient description of the interlaminar behaviour and the consideration of nonlinear constitutive properties. Numerical examples demonstrate the effectiveness and accuracy of the proposed approach and illustrate its potential for practical engineering applications.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118583"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically nonlinear analysis of layered beams using symbolic approach\",\"authors\":\"U. Rodman , D. Zupan , T. Šuštar , J. Korelc\",\"doi\":\"10.1016/j.compstruct.2024.118583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel layered spatial beam model with discrete connections between layers, developed to accurately capture large displacements and rotations as well as finite strains. The formulation is characterized by simplicity, robustness and compatibility with automatic code generation, making it suitable for various applications. Key features of the model include the use of a piecewise constant strain field, the inclusion of discrete unknowns such as strains and stress resultants, and the efficient numerical implementation using the automatic code generation. The discrete connections between the layers of the model enable an efficient description of the interlaminar behaviour and the consideration of nonlinear constitutive properties. Numerical examples demonstrate the effectiveness and accuracy of the proposed approach and illustrate its potential for practical engineering applications.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118583\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007116\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Geometrically nonlinear analysis of layered beams using symbolic approach
This study presents a novel layered spatial beam model with discrete connections between layers, developed to accurately capture large displacements and rotations as well as finite strains. The formulation is characterized by simplicity, robustness and compatibility with automatic code generation, making it suitable for various applications. Key features of the model include the use of a piecewise constant strain field, the inclusion of discrete unknowns such as strains and stress resultants, and the efficient numerical implementation using the automatic code generation. The discrete connections between the layers of the model enable an efficient description of the interlaminar behaviour and the consideration of nonlinear constitutive properties. Numerical examples demonstrate the effectiveness and accuracy of the proposed approach and illustrate its potential for practical engineering applications.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.