Suna Guo , Lei Yang , Qianhui Wang , Xiangjie Kong , Fan Wang
{"title":"振动条件下涡轮流量计的性能补偿模型","authors":"Suna Guo , Lei Yang , Qianhui Wang , Xiangjie Kong , Fan Wang","doi":"10.1016/j.flowmeasinst.2024.102704","DOIUrl":null,"url":null,"abstract":"<div><div>Vibration conditions will affect the performance of the turbine flowmeters, resulting in inaccurate or unstable measurement results. A DN10 turbine flowmeter is taken as an example to study the influence rule of vibration conditions on the turbine flowmeter performance. An experimental facility is built to simulate the vibration conditions with amplitude ranging from 35 mm to 90 mm and frequency ranging from 0 Hz to 4 Hz. A simulation method for simulating a turbine flowmeter under vibration conditions based on a dynamic coordinate system and 6DOF (Six Degrees of Freedom) is proposed. Based on the experiments and CFD (Computational Fluid Dynamics) simulation, the results show that the average meter factor of the turbine flowmeter under vibration conditions is larger than that under non-vibration conditions. The average meter factor increases with vibration amplitude and vibration frequency. The maximum relative error of the measured flow rate is 9.73 %. To reduce the measurement error, a performance compensation model of the turbine flowmeter applied to vibration conditions is proposed. The meter factor increment is taken as the dependent variable, and the frequency, amplitude, and flow rate are taken as independent variables. The results show that compared to the original model, the relative error of the turbine flowmeter with the compensation model shows an average reduction of 76.61 %.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102704"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance compensation model of turbine flowmeter under vibration conditions\",\"authors\":\"Suna Guo , Lei Yang , Qianhui Wang , Xiangjie Kong , Fan Wang\",\"doi\":\"10.1016/j.flowmeasinst.2024.102704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vibration conditions will affect the performance of the turbine flowmeters, resulting in inaccurate or unstable measurement results. A DN10 turbine flowmeter is taken as an example to study the influence rule of vibration conditions on the turbine flowmeter performance. An experimental facility is built to simulate the vibration conditions with amplitude ranging from 35 mm to 90 mm and frequency ranging from 0 Hz to 4 Hz. A simulation method for simulating a turbine flowmeter under vibration conditions based on a dynamic coordinate system and 6DOF (Six Degrees of Freedom) is proposed. Based on the experiments and CFD (Computational Fluid Dynamics) simulation, the results show that the average meter factor of the turbine flowmeter under vibration conditions is larger than that under non-vibration conditions. The average meter factor increases with vibration amplitude and vibration frequency. The maximum relative error of the measured flow rate is 9.73 %. To reduce the measurement error, a performance compensation model of the turbine flowmeter applied to vibration conditions is proposed. The meter factor increment is taken as the dependent variable, and the frequency, amplitude, and flow rate are taken as independent variables. The results show that compared to the original model, the relative error of the turbine flowmeter with the compensation model shows an average reduction of 76.61 %.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102704\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624001845\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001845","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Performance compensation model of turbine flowmeter under vibration conditions
Vibration conditions will affect the performance of the turbine flowmeters, resulting in inaccurate or unstable measurement results. A DN10 turbine flowmeter is taken as an example to study the influence rule of vibration conditions on the turbine flowmeter performance. An experimental facility is built to simulate the vibration conditions with amplitude ranging from 35 mm to 90 mm and frequency ranging from 0 Hz to 4 Hz. A simulation method for simulating a turbine flowmeter under vibration conditions based on a dynamic coordinate system and 6DOF (Six Degrees of Freedom) is proposed. Based on the experiments and CFD (Computational Fluid Dynamics) simulation, the results show that the average meter factor of the turbine flowmeter under vibration conditions is larger than that under non-vibration conditions. The average meter factor increases with vibration amplitude and vibration frequency. The maximum relative error of the measured flow rate is 9.73 %. To reduce the measurement error, a performance compensation model of the turbine flowmeter applied to vibration conditions is proposed. The meter factor increment is taken as the dependent variable, and the frequency, amplitude, and flow rate are taken as independent variables. The results show that compared to the original model, the relative error of the turbine flowmeter with the compensation model shows an average reduction of 76.61 %.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.