{"title":"静水压力下环形加固复合材料船体的力学性能和失效分析","authors":"Kaifeng Yuan , Zhenmeng Xia , Lianbo Wang , Linzhi Wu","doi":"10.1016/j.compstruct.2024.118609","DOIUrl":null,"url":null,"abstract":"<div><div>Ring stiffeners improve the buckling resistance of thin-walled hulls. In this study, theoretical models of buckling and strength failure of ring-stiffened composite hulls (RSCHs) were used to determine the design parameters. The hulls were prepared by filament winding on a mould composed of multi-petal-combined foams and steel shafts. The experimental results showed that the hydrostatic bearing performance of RSCHs was 1.79 times that of an unstiffened composite hull (USCH) with the same weight-to-displacement ratio (<em>WDR</em>). The crack in the damaged stiffened hulls penetrated the entire axis and expanded circumferentially, resulting in a stiffener fracture. Imperfections related to thickness deviations were introduced into a nonlinear buckling model by considering progressive damage. In contrast to the failure mechanism of USCH, the failure pressure of RSCHs was not at the peak of nonlinear buckling, and fibre compressive failure at 90° on the outermost layer of the skin was dominant. The error between simulated and experimental results was 4.64 %. The parameter analysis indicated that the stiffener height and width had different effects on the buckling load. However, when only the same type of strength failure occurred, both were independent of the load. This study demonstrated the load-bearing advantages of RSCHs for ocean engineering applications.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118609"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties and failure analysis of ring-stiffened composite hulls under hydrostatic pressure\",\"authors\":\"Kaifeng Yuan , Zhenmeng Xia , Lianbo Wang , Linzhi Wu\",\"doi\":\"10.1016/j.compstruct.2024.118609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ring stiffeners improve the buckling resistance of thin-walled hulls. In this study, theoretical models of buckling and strength failure of ring-stiffened composite hulls (RSCHs) were used to determine the design parameters. The hulls were prepared by filament winding on a mould composed of multi-petal-combined foams and steel shafts. The experimental results showed that the hydrostatic bearing performance of RSCHs was 1.79 times that of an unstiffened composite hull (USCH) with the same weight-to-displacement ratio (<em>WDR</em>). The crack in the damaged stiffened hulls penetrated the entire axis and expanded circumferentially, resulting in a stiffener fracture. Imperfections related to thickness deviations were introduced into a nonlinear buckling model by considering progressive damage. In contrast to the failure mechanism of USCH, the failure pressure of RSCHs was not at the peak of nonlinear buckling, and fibre compressive failure at 90° on the outermost layer of the skin was dominant. The error between simulated and experimental results was 4.64 %. The parameter analysis indicated that the stiffener height and width had different effects on the buckling load. However, when only the same type of strength failure occurred, both were independent of the load. This study demonstrated the load-bearing advantages of RSCHs for ocean engineering applications.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118609\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007372\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007372","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Mechanical properties and failure analysis of ring-stiffened composite hulls under hydrostatic pressure
Ring stiffeners improve the buckling resistance of thin-walled hulls. In this study, theoretical models of buckling and strength failure of ring-stiffened composite hulls (RSCHs) were used to determine the design parameters. The hulls were prepared by filament winding on a mould composed of multi-petal-combined foams and steel shafts. The experimental results showed that the hydrostatic bearing performance of RSCHs was 1.79 times that of an unstiffened composite hull (USCH) with the same weight-to-displacement ratio (WDR). The crack in the damaged stiffened hulls penetrated the entire axis and expanded circumferentially, resulting in a stiffener fracture. Imperfections related to thickness deviations were introduced into a nonlinear buckling model by considering progressive damage. In contrast to the failure mechanism of USCH, the failure pressure of RSCHs was not at the peak of nonlinear buckling, and fibre compressive failure at 90° on the outermost layer of the skin was dominant. The error between simulated and experimental results was 4.64 %. The parameter analysis indicated that the stiffener height and width had different effects on the buckling load. However, when only the same type of strength failure occurred, both were independent of the load. This study demonstrated the load-bearing advantages of RSCHs for ocean engineering applications.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.