基于鲁棒非单调 Lyapunov 的连续时间系统稳定性和稳定方法:应用于双边远程操纵系统

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Younes Solgi
{"title":"基于鲁棒非单调 Lyapunov 的连续时间系统稳定性和稳定方法:应用于双边远程操纵系统","authors":"Younes Solgi","doi":"10.1016/j.ifacsc.2024.100285","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a Non-monotonic Lyapunov (NML) framework aimed at stability evaluation and controller design for continuous-time systems, particularly under conditions of uncertainty. Conventional Lyapunov techniques often exhibit a conservative nature, particularly in the context of uncertain systems, which necessitates the development of less conservative alternatives like NML. The NML methodology distinguishes itself by not imposing strict monotonicity requirements for demonstrating the decrease of a Lyapunov functional. Consequently, this paper derives new stability and stabilization criteria framed as matrix inequalities applicable to a specific class of uncertain systems. The practical applicability of the introduced approach is illustrated through controller design for uncertain systems, exemplified by a nonlinear bilateral teleoperation model. Assorted demonstrative examples and simulation outcomes support the findings, underscoring the NML approach’s efficaciousness.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100285"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust non-monotonic Lyapunov based stability and stabilization methods for continuous-time systems: Applied on bilateral teleoperation system\",\"authors\":\"Younes Solgi\",\"doi\":\"10.1016/j.ifacsc.2024.100285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a Non-monotonic Lyapunov (NML) framework aimed at stability evaluation and controller design for continuous-time systems, particularly under conditions of uncertainty. Conventional Lyapunov techniques often exhibit a conservative nature, particularly in the context of uncertain systems, which necessitates the development of less conservative alternatives like NML. The NML methodology distinguishes itself by not imposing strict monotonicity requirements for demonstrating the decrease of a Lyapunov functional. Consequently, this paper derives new stability and stabilization criteria framed as matrix inequalities applicable to a specific class of uncertain systems. The practical applicability of the introduced approach is illustrated through controller design for uncertain systems, exemplified by a nonlinear bilateral teleoperation model. Assorted demonstrative examples and simulation outcomes support the findings, underscoring the NML approach’s efficaciousness.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"30 \",\"pages\":\"Article 100285\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种非单调李亚普诺夫(NML)框架,旨在对连续时间系统进行稳定性评估和控制器设计,尤其是在不确定条件下。传统的 Lyapunov 技术往往表现出保守的性质,尤其是在不确定系统的情况下,这就需要开发像 NML 这样不那么保守的替代方法。NML 方法的与众不同之处在于,它在证明 Lyapunov 函数的下降时不强加严格的单调性要求。因此,本文推导出了适用于特定类别不确定系统的矩阵不等式的新稳定性和稳定性标准。本文以非线性双边远程操作模型为例,通过不确定系统的控制器设计说明了所介绍方法的实际应用性。各种演示示例和仿真结果都支持这些研究结果,凸显了 NML 方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust non-monotonic Lyapunov based stability and stabilization methods for continuous-time systems: Applied on bilateral teleoperation system
This study introduces a Non-monotonic Lyapunov (NML) framework aimed at stability evaluation and controller design for continuous-time systems, particularly under conditions of uncertainty. Conventional Lyapunov techniques often exhibit a conservative nature, particularly in the context of uncertain systems, which necessitates the development of less conservative alternatives like NML. The NML methodology distinguishes itself by not imposing strict monotonicity requirements for demonstrating the decrease of a Lyapunov functional. Consequently, this paper derives new stability and stabilization criteria framed as matrix inequalities applicable to a specific class of uncertain systems. The practical applicability of the introduced approach is illustrated through controller design for uncertain systems, exemplified by a nonlinear bilateral teleoperation model. Assorted demonstrative examples and simulation outcomes support the findings, underscoring the NML approach’s efficaciousness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信