Yachao Tu , Haoxiang Lin , Mingliang Chen , Zhonggang Zhang , Weiqiang Cai , Zhaoyi Zhu
{"title":"设计 Y 型流道并对其进行数值分析,以提高固体氧化物电解槽的制氢能力","authors":"Yachao Tu , Haoxiang Lin , Mingliang Chen , Zhonggang Zhang , Weiqiang Cai , Zhaoyi Zhu","doi":"10.1016/j.ijoes.2024.100806","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen produced from renewable sources is crucial for reducing carbon emissions and mitigating the impact of greenhouse gases. Solid Oxide Electrolysis Cells (SOECs) offer high efficiency in this regard, making them a focus of significant research interest. This study introduces a novel approach using numerical simulations to design a Y-shaped flow channel interconnector for the first time. A three-dimensional multiphysics coupling mathematical model is developed to investigate hydrogen production via water electrolysis in SOECs. Comparative analysis between the new Y-shaped flow channel and traditional straight channel SOEC models covers component distribution, temperature field, electrolyte current density, and thermal stress. Simulation results indicate a 20.72 % increase in hydrolysis rate with the Y-shaped channel under a counter-flow arrangement compared to the conventional straight channel. The rhombic connectors in the Y-shaped design lead to a more uniform current density distribution, with a maximum current density higher by approximately 647 A/m<sup>2</sup> than the straight channel. However, the Y-shaped channel exhibits higher temperatures, resulting in larger thermal stress.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 11","pages":"Article 100806"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and numerical analysis of a Y-shaped flow channel for enhanced hydrogen production in solid oxide electrolysis cells\",\"authors\":\"Yachao Tu , Haoxiang Lin , Mingliang Chen , Zhonggang Zhang , Weiqiang Cai , Zhaoyi Zhu\",\"doi\":\"10.1016/j.ijoes.2024.100806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen produced from renewable sources is crucial for reducing carbon emissions and mitigating the impact of greenhouse gases. Solid Oxide Electrolysis Cells (SOECs) offer high efficiency in this regard, making them a focus of significant research interest. This study introduces a novel approach using numerical simulations to design a Y-shaped flow channel interconnector for the first time. A three-dimensional multiphysics coupling mathematical model is developed to investigate hydrogen production via water electrolysis in SOECs. Comparative analysis between the new Y-shaped flow channel and traditional straight channel SOEC models covers component distribution, temperature field, electrolyte current density, and thermal stress. Simulation results indicate a 20.72 % increase in hydrolysis rate with the Y-shaped channel under a counter-flow arrangement compared to the conventional straight channel. The rhombic connectors in the Y-shaped design lead to a more uniform current density distribution, with a maximum current density higher by approximately 647 A/m<sup>2</sup> than the straight channel. However, the Y-shaped channel exhibits higher temperatures, resulting in larger thermal stress.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"19 11\",\"pages\":\"Article 100806\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003481\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003481","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
利用可再生资源生产氢气对于减少碳排放和减轻温室气体的影响至关重要。固体氧化物电解池(SOEC)在这方面具有很高的效率,因此成为研究的重点。本研究首次采用数值模拟的新方法来设计 Y 型流道互联器。研究还建立了一个三维多物理场耦合数学模型,以研究 SOECs 中通过电解水制氢的情况。新的 Y 型流道与传统直流道 SOEC 模型之间的比较分析包括成分分布、温度场、电解质电流密度和热应力。模拟结果表明,在逆流布置下,Y 型流道的水解率比传统直流道提高了 20.72%。Y 型设计中的菱形连接器使电流密度分布更加均匀,最大电流密度比直槽高出约 647 A/m2 。不过,Y 型通道的温度更高,导致热应力更大。
Design and numerical analysis of a Y-shaped flow channel for enhanced hydrogen production in solid oxide electrolysis cells
Hydrogen produced from renewable sources is crucial for reducing carbon emissions and mitigating the impact of greenhouse gases. Solid Oxide Electrolysis Cells (SOECs) offer high efficiency in this regard, making them a focus of significant research interest. This study introduces a novel approach using numerical simulations to design a Y-shaped flow channel interconnector for the first time. A three-dimensional multiphysics coupling mathematical model is developed to investigate hydrogen production via water electrolysis in SOECs. Comparative analysis between the new Y-shaped flow channel and traditional straight channel SOEC models covers component distribution, temperature field, electrolyte current density, and thermal stress. Simulation results indicate a 20.72 % increase in hydrolysis rate with the Y-shaped channel under a counter-flow arrangement compared to the conventional straight channel. The rhombic connectors in the Y-shaped design lead to a more uniform current density distribution, with a maximum current density higher by approximately 647 A/m2 than the straight channel. However, the Y-shaped channel exhibits higher temperatures, resulting in larger thermal stress.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry