Minggang Zheng , Han Liang , Wenxie Bu , Cheng Qu , Xiaoxu Hu , Zhihu Zhang
{"title":"基于拓扑算法优化 PEMFC 阴极气体扩散层的孔隙率和渗透率","authors":"Minggang Zheng , Han Liang , Wenxie Bu , Cheng Qu , Xiaoxu Hu , Zhihu Zhang","doi":"10.1016/j.ijoes.2024.100803","DOIUrl":null,"url":null,"abstract":"<div><div>The gas diffusion layer (GDL) is a crucial component in proton exchange membrane fuel cells (PEMFCs), significantly affecting mass transport and overall cell performance. Due to the pronounced pressure gradients and uneven mass transfer between the inlet and outlet of the serpentine flow field, this study proposes the design of a GDL with a concentration gradient to optimize performance. Leveraging topological optimization algorithms, the research focuses on enhancing the mass transport properties and improving cell efficiency. The optimization process considers the pressure distribution, oxygen concentration, and water content within the serpentine flow field as boundary conditions. By optimizing the porosity and permeability of the GDL in different regions, the study aims to enhance the GDL's mass transport capabilities. Simulation results demonstrate that initializing the porosity at 1 provides superior optimization, significantly enhancing mass transfer and overall cell performance. Although increased permeability contributes to improved mass transport, its impact is less significant compared to porosity optimization. Therefore, GDL porosity is identified as the dominant factor in enhancing cell performance, while permeability adjustments play a secondary role.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porosity and permeability optimization of PEMFC cathode gas diffusion layer based on topology algorithm\",\"authors\":\"Minggang Zheng , Han Liang , Wenxie Bu , Cheng Qu , Xiaoxu Hu , Zhihu Zhang\",\"doi\":\"10.1016/j.ijoes.2024.100803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The gas diffusion layer (GDL) is a crucial component in proton exchange membrane fuel cells (PEMFCs), significantly affecting mass transport and overall cell performance. Due to the pronounced pressure gradients and uneven mass transfer between the inlet and outlet of the serpentine flow field, this study proposes the design of a GDL with a concentration gradient to optimize performance. Leveraging topological optimization algorithms, the research focuses on enhancing the mass transport properties and improving cell efficiency. The optimization process considers the pressure distribution, oxygen concentration, and water content within the serpentine flow field as boundary conditions. By optimizing the porosity and permeability of the GDL in different regions, the study aims to enhance the GDL's mass transport capabilities. Simulation results demonstrate that initializing the porosity at 1 provides superior optimization, significantly enhancing mass transfer and overall cell performance. Although increased permeability contributes to improved mass transport, its impact is less significant compared to porosity optimization. Therefore, GDL porosity is identified as the dominant factor in enhancing cell performance, while permeability adjustments play a secondary role.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003456\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003456","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Porosity and permeability optimization of PEMFC cathode gas diffusion layer based on topology algorithm
The gas diffusion layer (GDL) is a crucial component in proton exchange membrane fuel cells (PEMFCs), significantly affecting mass transport and overall cell performance. Due to the pronounced pressure gradients and uneven mass transfer between the inlet and outlet of the serpentine flow field, this study proposes the design of a GDL with a concentration gradient to optimize performance. Leveraging topological optimization algorithms, the research focuses on enhancing the mass transport properties and improving cell efficiency. The optimization process considers the pressure distribution, oxygen concentration, and water content within the serpentine flow field as boundary conditions. By optimizing the porosity and permeability of the GDL in different regions, the study aims to enhance the GDL's mass transport capabilities. Simulation results demonstrate that initializing the porosity at 1 provides superior optimization, significantly enhancing mass transfer and overall cell performance. Although increased permeability contributes to improved mass transport, its impact is less significant compared to porosity optimization. Therefore, GDL porosity is identified as the dominant factor in enhancing cell performance, while permeability adjustments play a secondary role.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.