蒙特卡洛模拟揭示蜂巢、卡戈梅和三角形纳米晶格的磁性差异

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
{"title":"蒙特卡洛模拟揭示蜂巢、卡戈梅和三角形纳米晶格的磁性差异","authors":"","doi":"10.1016/j.physb.2024.416566","DOIUrl":null,"url":null,"abstract":"<div><div>Monte Carlo simulations reveal distinct magnetic behaviors in honeycomb, kagome, and triangular nanolattices, crucial for magnetic material development. The honeycomb nanolattice shows the earliest magnetization decline, followed by the kagome and triangular nanolattices, due to differences in atomic arrangement and geometry. Increasing the linear coupling interaction (<em>J</em>), biquadratic coupling interaction (<em>K</em>), and external magnetic field raises the blocking temperature, while a higher crystal field (∣<em>D</em>∣) lowers it. These findings are pivotal for optimizing magnetic stability and behavior in applications like magnetic storage, sensors, and nanotechnologies.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo simulations unveil magnetic differences in honeycomb, kagome, and triangular nanolattices\",\"authors\":\"\",\"doi\":\"10.1016/j.physb.2024.416566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monte Carlo simulations reveal distinct magnetic behaviors in honeycomb, kagome, and triangular nanolattices, crucial for magnetic material development. The honeycomb nanolattice shows the earliest magnetization decline, followed by the kagome and triangular nanolattices, due to differences in atomic arrangement and geometry. Increasing the linear coupling interaction (<em>J</em>), biquadratic coupling interaction (<em>K</em>), and external magnetic field raises the blocking temperature, while a higher crystal field (∣<em>D</em>∣) lowers it. These findings are pivotal for optimizing magnetic stability and behavior in applications like magnetic storage, sensors, and nanotechnologies.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624009074\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

蒙特卡洛模拟揭示了蜂窝状、卡戈米状和三角形纳米晶格中截然不同的磁性行为,这对磁性材料的开发至关重要。由于原子排列和几何形状的不同,蜂窝状纳米晶格显示出最早的磁化衰退,其次是卡戈米纳米晶格和三角形纳米晶格。增加线性耦合相互作用(J)、二次耦合相互作用(K)和外磁场会提高阻挡温度,而较高的晶体场(∣D∣)会降低阻挡温度。这些发现对于优化磁存储、传感器和纳米技术等应用中的磁稳定性和磁行为至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte Carlo simulations unveil magnetic differences in honeycomb, kagome, and triangular nanolattices
Monte Carlo simulations reveal distinct magnetic behaviors in honeycomb, kagome, and triangular nanolattices, crucial for magnetic material development. The honeycomb nanolattice shows the earliest magnetization decline, followed by the kagome and triangular nanolattices, due to differences in atomic arrangement and geometry. Increasing the linear coupling interaction (J), biquadratic coupling interaction (K), and external magnetic field raises the blocking temperature, while a higher crystal field (∣D∣) lowers it. These findings are pivotal for optimizing magnetic stability and behavior in applications like magnetic storage, sensors, and nanotechnologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信