Chao Liu , Nemkumar Banthia , Yifan Shi , Zijian Jia , Yamei Zhang , Yu Chen , Yuanliang Xiong , Chun Chen
{"title":"用超吸收聚合物改性的 3D 打印泡沫混凝土的早期龄期收缩缓解和失水动力学定量研究","authors":"Chao Liu , Nemkumar Banthia , Yifan Shi , Zijian Jia , Yamei Zhang , Yu Chen , Yuanliang Xiong , Chun Chen","doi":"10.1016/j.addma.2024.104448","DOIUrl":null,"url":null,"abstract":"<div><div>Due to direct exposure to the environment during the printing process and after printing and its own porous characteristics, 3D printed foam concrete (3DPFC) will inevitably have a large shrinkage at early age. In this study, the early age shrinkage of 3DPFC was modified by using various dosages of superabsorbent polymer (SAP). The water loss kinetics of 3DPFC at early age were elucidated, and the mechanism influencing early age shrinkage of 3DPFC was revealed. The 8-hour total shrinkage of 3DPFC with two foam contents was reduced by 23.1% and 24.3% at most, respectively. Based on low-field nuclear magnetic transverse relaxation time, liquids in bubble liquid film, capillary pores of the matrix, and inside SAP were quantified and tracked in real time. Under exposure conditions, there exists a quantitative relationship between internal water loss variations in 3DPFC and the matrix <em>T</em><sub>21</sub> peak water (water adsorbed by binder particles and small capillary water between particles), bubble volume fraction, and surface tension of the matrix pore solution. The early age shrinkage of 3DPFC is indeed influenced by the combined effect of water loss and bubble volume fraction.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104448"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early age shrinkage mitigation and quantitative study on water loss kinetics of 3D printed foam concrete modified with superabsorbent polymers\",\"authors\":\"Chao Liu , Nemkumar Banthia , Yifan Shi , Zijian Jia , Yamei Zhang , Yu Chen , Yuanliang Xiong , Chun Chen\",\"doi\":\"10.1016/j.addma.2024.104448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to direct exposure to the environment during the printing process and after printing and its own porous characteristics, 3D printed foam concrete (3DPFC) will inevitably have a large shrinkage at early age. In this study, the early age shrinkage of 3DPFC was modified by using various dosages of superabsorbent polymer (SAP). The water loss kinetics of 3DPFC at early age were elucidated, and the mechanism influencing early age shrinkage of 3DPFC was revealed. The 8-hour total shrinkage of 3DPFC with two foam contents was reduced by 23.1% and 24.3% at most, respectively. Based on low-field nuclear magnetic transverse relaxation time, liquids in bubble liquid film, capillary pores of the matrix, and inside SAP were quantified and tracked in real time. Under exposure conditions, there exists a quantitative relationship between internal water loss variations in 3DPFC and the matrix <em>T</em><sub>21</sub> peak water (water adsorbed by binder particles and small capillary water between particles), bubble volume fraction, and surface tension of the matrix pore solution. The early age shrinkage of 3DPFC is indeed influenced by the combined effect of water loss and bubble volume fraction.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"94 \",\"pages\":\"Article 104448\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424004949\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424004949","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Early age shrinkage mitigation and quantitative study on water loss kinetics of 3D printed foam concrete modified with superabsorbent polymers
Due to direct exposure to the environment during the printing process and after printing and its own porous characteristics, 3D printed foam concrete (3DPFC) will inevitably have a large shrinkage at early age. In this study, the early age shrinkage of 3DPFC was modified by using various dosages of superabsorbent polymer (SAP). The water loss kinetics of 3DPFC at early age were elucidated, and the mechanism influencing early age shrinkage of 3DPFC was revealed. The 8-hour total shrinkage of 3DPFC with two foam contents was reduced by 23.1% and 24.3% at most, respectively. Based on low-field nuclear magnetic transverse relaxation time, liquids in bubble liquid film, capillary pores of the matrix, and inside SAP were quantified and tracked in real time. Under exposure conditions, there exists a quantitative relationship between internal water loss variations in 3DPFC and the matrix T21 peak water (water adsorbed by binder particles and small capillary water between particles), bubble volume fraction, and surface tension of the matrix pore solution. The early age shrinkage of 3DPFC is indeed influenced by the combined effect of water loss and bubble volume fraction.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.