具有周期性和非连续性粘合的薄膜/基底系统的剥离行为

IF 4.7 2区 工程技术 Q1 MECHANICS
{"title":"具有周期性和非连续性粘合的薄膜/基底系统的剥离行为","authors":"","doi":"10.1016/j.engfracmech.2024.110518","DOIUrl":null,"url":null,"abstract":"<div><div>Discontinuous bonding is a common adhesion state in multilayer structures within the shipbuilding, automotive, and semiconductor industries, as well as in biological adhesion. Based on the cohesive theory and the Euler-Bernoulli beam model, we investigate the peeling behavior of a film from the rigid substrate subjected to periodic and discontinuous bonding. Different from the continuous bonding model, the peeling force during the peeling process exhibits repeated fluctuations. The increase and decrease of peeling force correspond respectively to the initiation of cohesive zones within the non-bonded and bonded segments. Furthermore, the bonding state at the crack tip influences the change pace of the energy release rate. Specifically, when the cohesive zone initiates within a bonded segment, the decrease in the energy release rate accelerates noticeably as the crack tip enters a non-bonded segment. Additionally, the influence of diverse bonding ratios and varying periodic lengths is discussed. This paper provides insights into the peeling behavior under discontinuous bonding effects in nature, and offers potential applications for the optimization and design of multilayer structures.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The peeling behavior of film/substrate systems with periodic and discontinuous bonding\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Discontinuous bonding is a common adhesion state in multilayer structures within the shipbuilding, automotive, and semiconductor industries, as well as in biological adhesion. Based on the cohesive theory and the Euler-Bernoulli beam model, we investigate the peeling behavior of a film from the rigid substrate subjected to periodic and discontinuous bonding. Different from the continuous bonding model, the peeling force during the peeling process exhibits repeated fluctuations. The increase and decrease of peeling force correspond respectively to the initiation of cohesive zones within the non-bonded and bonded segments. Furthermore, the bonding state at the crack tip influences the change pace of the energy release rate. Specifically, when the cohesive zone initiates within a bonded segment, the decrease in the energy release rate accelerates noticeably as the crack tip enters a non-bonded segment. Additionally, the influence of diverse bonding ratios and varying periodic lengths is discussed. This paper provides insights into the peeling behavior under discontinuous bonding effects in nature, and offers potential applications for the optimization and design of multilayer structures.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006817\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006817","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在造船、汽车和半导体工业的多层结构以及生物粘附中,不连续粘结是一种常见的粘附状态。基于内聚理论和欧拉-伯努利梁模型,我们研究了薄膜在周期性和非连续性粘合下从刚性基底上剥离的行为。与连续粘合模型不同,剥离过程中的剥离力呈现反复波动。剥离力的增大和减小分别对应于非粘合段和粘合段内内聚区的形成。此外,裂纹尖端的粘合状态也会影响能量释放率的变化速度。具体来说,当内聚区开始出现在粘合区段时,当裂纹尖端进入非粘合区段时,能量释放率的下降速度会明显加快。此外,本文还讨论了不同粘合比和不同周期长度的影响。本文深入探讨了自然界中不连续粘结效应下的剥离行为,并为多层结构的优化和设计提供了潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The peeling behavior of film/substrate systems with periodic and discontinuous bonding
Discontinuous bonding is a common adhesion state in multilayer structures within the shipbuilding, automotive, and semiconductor industries, as well as in biological adhesion. Based on the cohesive theory and the Euler-Bernoulli beam model, we investigate the peeling behavior of a film from the rigid substrate subjected to periodic and discontinuous bonding. Different from the continuous bonding model, the peeling force during the peeling process exhibits repeated fluctuations. The increase and decrease of peeling force correspond respectively to the initiation of cohesive zones within the non-bonded and bonded segments. Furthermore, the bonding state at the crack tip influences the change pace of the energy release rate. Specifically, when the cohesive zone initiates within a bonded segment, the decrease in the energy release rate accelerates noticeably as the crack tip enters a non-bonded segment. Additionally, the influence of diverse bonding ratios and varying periodic lengths is discussed. This paper provides insights into the peeling behavior under discontinuous bonding effects in nature, and offers potential applications for the optimization and design of multilayer structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信