Jianwen Wang , Tao Li , Yufei Zhang , Sitong Liu , Fei Tian , Xiaochen Liu , Chun Li , Zhansheng Wu
{"title":"根渗出物和载体介导的枯草芽孢杆菌 SL-44 在 Cr(OH)3 改性多孔介质中的运动","authors":"Jianwen Wang , Tao Li , Yufei Zhang , Sitong Liu , Fei Tian , Xiaochen Liu , Chun Li , Zhansheng Wu","doi":"10.1016/j.rhisph.2024.100964","DOIUrl":null,"url":null,"abstract":"<div><div>Plant growth promoting rhizobacteria (PGPR) have a remediation effect on Cr-contaminated soil; however, the remediation scope is only within a small area around the bacteria. Hence, the remediation effect depends on the migration ability of bacteria in the soil. Root exudates enhance the chemotaxis and locomotion of <em>Bacillus subtilis</em> SL-44 by reducing its adhesion coefficient <em>k</em><sub>att</sub> and hydrodynamic dispersion coefficient <em>D</em>. The locomotion capacity was enhanced by 7.84%–20.00%. Among the root exudates, proline and sucrose remarkably improved the motility of SL44. Biochar and bentonite increased the <em>k</em><sub>att</sub> and <em>D</em> of SL-44, inhibited bacterial locomotion, and improved the retention rate on the carrier surface. Bacterial locomotion was reduced by biochar and bentonite by 57.99% and 50.42%, respectively. These reductions were caused by macropore. SL-44 locomotion was positively correlated with the concentration of environmental root exudate (R<sup>2</sup> = 0.88−0.92). The results of the simulated soil study were validated in actual agricultural Cr-contaminated soils through qPCR.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locomotion of Bacillus subtilis SL-44 mediated by root exudate and carrier in Cr(OH)3-modified porous media\",\"authors\":\"Jianwen Wang , Tao Li , Yufei Zhang , Sitong Liu , Fei Tian , Xiaochen Liu , Chun Li , Zhansheng Wu\",\"doi\":\"10.1016/j.rhisph.2024.100964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plant growth promoting rhizobacteria (PGPR) have a remediation effect on Cr-contaminated soil; however, the remediation scope is only within a small area around the bacteria. Hence, the remediation effect depends on the migration ability of bacteria in the soil. Root exudates enhance the chemotaxis and locomotion of <em>Bacillus subtilis</em> SL-44 by reducing its adhesion coefficient <em>k</em><sub>att</sub> and hydrodynamic dispersion coefficient <em>D</em>. The locomotion capacity was enhanced by 7.84%–20.00%. Among the root exudates, proline and sucrose remarkably improved the motility of SL44. Biochar and bentonite increased the <em>k</em><sub>att</sub> and <em>D</em> of SL-44, inhibited bacterial locomotion, and improved the retention rate on the carrier surface. Bacterial locomotion was reduced by biochar and bentonite by 57.99% and 50.42%, respectively. These reductions were caused by macropore. SL-44 locomotion was positively correlated with the concentration of environmental root exudate (R<sup>2</sup> = 0.88−0.92). The results of the simulated soil study were validated in actual agricultural Cr-contaminated soils through qPCR.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452219824001198\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Locomotion of Bacillus subtilis SL-44 mediated by root exudate and carrier in Cr(OH)3-modified porous media
Plant growth promoting rhizobacteria (PGPR) have a remediation effect on Cr-contaminated soil; however, the remediation scope is only within a small area around the bacteria. Hence, the remediation effect depends on the migration ability of bacteria in the soil. Root exudates enhance the chemotaxis and locomotion of Bacillus subtilis SL-44 by reducing its adhesion coefficient katt and hydrodynamic dispersion coefficient D. The locomotion capacity was enhanced by 7.84%–20.00%. Among the root exudates, proline and sucrose remarkably improved the motility of SL44. Biochar and bentonite increased the katt and D of SL-44, inhibited bacterial locomotion, and improved the retention rate on the carrier surface. Bacterial locomotion was reduced by biochar and bentonite by 57.99% and 50.42%, respectively. These reductions were caused by macropore. SL-44 locomotion was positively correlated with the concentration of environmental root exudate (R2 = 0.88−0.92). The results of the simulated soil study were validated in actual agricultural Cr-contaminated soils through qPCR.