{"title":"利用物理球接触模型研究平面六边形、方形和三棱晶格上支撑的紧密堆积纳米粒子的结构","authors":"Constantinos D. Zeinalipour-Yazdi","doi":"10.1016/j.chemphys.2024.112464","DOIUrl":null,"url":null,"abstract":"<div><div>The tailored design of nanoparticles becomes more important with the advancement of heterogeneous catalysis and materials science. The formation of nanoparticles in catalysts with a specific geometry of the active site becomes necessary to improve activity and selectivity in catalysis. Here we have used physical sphere-in-contact models of various nanoparticles with hexagonal, square and trigonal geometries on flat close-packed surfaces to understand how the distribution of (100) and (111) sites changes as a function of nanoparticle (NP) size in a simplified model of nanoparticle supported metals. The results from this approach clearly show that in 2-layer NPs that have a hexagonal base have 2–3 times more (100) sites than the square and trigonal base NPs as a function of the number of atoms in the NP. In 3D isotropic NPs, this phenomenon is even more pronounced than the 2-layer NPs. We derive equations that estimate the number of (100), (111), the number of atoms and the aspect ratio as a function of n. These equations are important in tailoring the properties of NPs supported on close-packed metal surfaces, which may find applications in materials science, nanotechnology and catalysis.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"588 ","pages":"Article 112464"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study using physical sphere-in-contact models to investigate the structure of close-packed nanoparticles supported on flat hexagonal, square and trigonal lattices\",\"authors\":\"Constantinos D. Zeinalipour-Yazdi\",\"doi\":\"10.1016/j.chemphys.2024.112464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tailored design of nanoparticles becomes more important with the advancement of heterogeneous catalysis and materials science. The formation of nanoparticles in catalysts with a specific geometry of the active site becomes necessary to improve activity and selectivity in catalysis. Here we have used physical sphere-in-contact models of various nanoparticles with hexagonal, square and trigonal geometries on flat close-packed surfaces to understand how the distribution of (100) and (111) sites changes as a function of nanoparticle (NP) size in a simplified model of nanoparticle supported metals. The results from this approach clearly show that in 2-layer NPs that have a hexagonal base have 2–3 times more (100) sites than the square and trigonal base NPs as a function of the number of atoms in the NP. In 3D isotropic NPs, this phenomenon is even more pronounced than the 2-layer NPs. We derive equations that estimate the number of (100), (111), the number of atoms and the aspect ratio as a function of n. These equations are important in tailoring the properties of NPs supported on close-packed metal surfaces, which may find applications in materials science, nanotechnology and catalysis.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"588 \",\"pages\":\"Article 112464\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424002933\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002933","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A study using physical sphere-in-contact models to investigate the structure of close-packed nanoparticles supported on flat hexagonal, square and trigonal lattices
The tailored design of nanoparticles becomes more important with the advancement of heterogeneous catalysis and materials science. The formation of nanoparticles in catalysts with a specific geometry of the active site becomes necessary to improve activity and selectivity in catalysis. Here we have used physical sphere-in-contact models of various nanoparticles with hexagonal, square and trigonal geometries on flat close-packed surfaces to understand how the distribution of (100) and (111) sites changes as a function of nanoparticle (NP) size in a simplified model of nanoparticle supported metals. The results from this approach clearly show that in 2-layer NPs that have a hexagonal base have 2–3 times more (100) sites than the square and trigonal base NPs as a function of the number of atoms in the NP. In 3D isotropic NPs, this phenomenon is even more pronounced than the 2-layer NPs. We derive equations that estimate the number of (100), (111), the number of atoms and the aspect ratio as a function of n. These equations are important in tailoring the properties of NPs supported on close-packed metal surfaces, which may find applications in materials science, nanotechnology and catalysis.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.