Zhiwen Wang , Ziqi Wang , Hongyu Zhao , Bowei Li , Qianyu Guo , Aokai Xu , Shengxue Wang , Hongan Ma , Liangchao Chen , Xiaopeng Jia
{"title":"高压高温合成金刚石中的硼和氮杂质的行为","authors":"Zhiwen Wang , Ziqi Wang , Hongyu Zhao , Bowei Li , Qianyu Guo , Aokai Xu , Shengxue Wang , Hongan Ma , Liangchao Chen , Xiaopeng Jia","doi":"10.1016/j.ijrmhm.2024.106902","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of nitrogen on the growth of boron-doped diamonds was investigated by removing or adding nitrogen impurities. Optical microscopy images showed that adding a small amount of boron to nitrogen-free diamond completely transformed the diamond into an opaque black color. In the presence of small amounts of boron, the addition of nitrogen diminished the chromogenic properties of boron impurities in diamond. The FTIR spectra showed a compensatory interaction between boron and nitrogen in diamond, causing a portion of the nitrogen to exist as N<sup>+</sup> center. Raman spectroscopy confirmed that adding small amounts of nitrogen to diamond reduced the stresses in the diamond and improved its quality, whereas adding excessive amounts of nitrogen reduced the quality. The Hall effect measurements showed that adding nitrogen to boron-doped diamond reduced its p-conductivity, causing an increase in its resistivity and a decrease in its carrier concentration.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"125 ","pages":"Article 106902"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of boron and nitrogen impurities in diamonds synthesized at high pressure and high temperature\",\"authors\":\"Zhiwen Wang , Ziqi Wang , Hongyu Zhao , Bowei Li , Qianyu Guo , Aokai Xu , Shengxue Wang , Hongan Ma , Liangchao Chen , Xiaopeng Jia\",\"doi\":\"10.1016/j.ijrmhm.2024.106902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of nitrogen on the growth of boron-doped diamonds was investigated by removing or adding nitrogen impurities. Optical microscopy images showed that adding a small amount of boron to nitrogen-free diamond completely transformed the diamond into an opaque black color. In the presence of small amounts of boron, the addition of nitrogen diminished the chromogenic properties of boron impurities in diamond. The FTIR spectra showed a compensatory interaction between boron and nitrogen in diamond, causing a portion of the nitrogen to exist as N<sup>+</sup> center. Raman spectroscopy confirmed that adding small amounts of nitrogen to diamond reduced the stresses in the diamond and improved its quality, whereas adding excessive amounts of nitrogen reduced the quality. The Hall effect measurements showed that adding nitrogen to boron-doped diamond reduced its p-conductivity, causing an increase in its resistivity and a decrease in its carrier concentration.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"125 \",\"pages\":\"Article 106902\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436824003500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824003500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Behavior of boron and nitrogen impurities in diamonds synthesized at high pressure and high temperature
The effect of nitrogen on the growth of boron-doped diamonds was investigated by removing or adding nitrogen impurities. Optical microscopy images showed that adding a small amount of boron to nitrogen-free diamond completely transformed the diamond into an opaque black color. In the presence of small amounts of boron, the addition of nitrogen diminished the chromogenic properties of boron impurities in diamond. The FTIR spectra showed a compensatory interaction between boron and nitrogen in diamond, causing a portion of the nitrogen to exist as N+ center. Raman spectroscopy confirmed that adding small amounts of nitrogen to diamond reduced the stresses in the diamond and improved its quality, whereas adding excessive amounts of nitrogen reduced the quality. The Hall effect measurements showed that adding nitrogen to boron-doped diamond reduced its p-conductivity, causing an increase in its resistivity and a decrease in its carrier concentration.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.