Seth F. McCarthy , Michael S. Finch , Rebecca E.K. MacPherson , Tom J. Hazell
{"title":"运动或外周注射造成的与生理相关的乳酸积累不会改变小鼠的中枢或外周食欲信号传导","authors":"Seth F. McCarthy , Michael S. Finch , Rebecca E.K. MacPherson , Tom J. Hazell","doi":"10.1016/j.npep.2024.102473","DOIUrl":null,"url":null,"abstract":"<div><div>Lactate has been implicated in exercise-induced appetite suppression though little work has explored the mechanisms underpinning its role. Recent work suggests lactate accumulation via exercise and intracerebroventricular injection can alter central appetite regulating pathways, though a supraphysiological dose of lactate was administered centrally and there was no assessment of peripheral appetite markers. Therefore, we examined how physiologically relevant lactate accumulation via exercise or intraperitoneal injection altered central and peripheral appetite signaling pathways and whether the lactate dehydrogenase inhibitor oxamate could blunt any exercise effect. Forty 10-week-old C57BL/6 J male mice (<em>n</em> = 10/group) were assigned to either: 1) sedentary (SED + SAL; saline); 2) exercise (EX+SAL; saline); 3) exercise with oxamate (EX+OX; 750 mg‧kg<sup>−1</sup> body mass); or 4) lactate (SED + LAC; 1.0 g‧kg<sup>−1</sup> body mass). Blood, stomach, and hypothalamus samples were collected ∼2 h post-exercise/injection. Though oxamate blunted exercise-induced lactate accumulation compared to the EX+SAL condition (<em>P</em> = 0.044, <em>d</em> = 0.73), there were no differences in circulating acylated ghrelin or stomach ghrelin O-acyltransferase content between groups (<em>P</em> > 0.213, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.125). There were also no differences in hypothalamic content for neuropeptide Y, proopiomelanocortin, agouti-related peptide, and alpha melanocyte-stimulating hormone (<em>P</em> > 0.150, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.170). Exercise did increase phosphorylated-total signal transducer and activator of transcription 3 (pSTAT3) compared to EX+OX (<em>p</em> = 0.065, <em>d</em> = 1.23) but there were no differences in other markers of lactate signaling: phosphorylated-total adenosine monophosphate activated protein kinase, and protein kinase b (<em>P</em> > 0.121, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.160). Our results suggest that lactate accumulation due to exercise or peripheral injection does not alter central or peripheral appetite signaling when measured 2 h post-exercise/injection, though pSTAT3 was blunted with oxamate.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"108 ","pages":"Article 102473"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice\",\"authors\":\"Seth F. McCarthy , Michael S. Finch , Rebecca E.K. MacPherson , Tom J. Hazell\",\"doi\":\"10.1016/j.npep.2024.102473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lactate has been implicated in exercise-induced appetite suppression though little work has explored the mechanisms underpinning its role. Recent work suggests lactate accumulation via exercise and intracerebroventricular injection can alter central appetite regulating pathways, though a supraphysiological dose of lactate was administered centrally and there was no assessment of peripheral appetite markers. Therefore, we examined how physiologically relevant lactate accumulation via exercise or intraperitoneal injection altered central and peripheral appetite signaling pathways and whether the lactate dehydrogenase inhibitor oxamate could blunt any exercise effect. Forty 10-week-old C57BL/6 J male mice (<em>n</em> = 10/group) were assigned to either: 1) sedentary (SED + SAL; saline); 2) exercise (EX+SAL; saline); 3) exercise with oxamate (EX+OX; 750 mg‧kg<sup>−1</sup> body mass); or 4) lactate (SED + LAC; 1.0 g‧kg<sup>−1</sup> body mass). Blood, stomach, and hypothalamus samples were collected ∼2 h post-exercise/injection. Though oxamate blunted exercise-induced lactate accumulation compared to the EX+SAL condition (<em>P</em> = 0.044, <em>d</em> = 0.73), there were no differences in circulating acylated ghrelin or stomach ghrelin O-acyltransferase content between groups (<em>P</em> > 0.213, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.125). There were also no differences in hypothalamic content for neuropeptide Y, proopiomelanocortin, agouti-related peptide, and alpha melanocyte-stimulating hormone (<em>P</em> > 0.150, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.170). Exercise did increase phosphorylated-total signal transducer and activator of transcription 3 (pSTAT3) compared to EX+OX (<em>p</em> = 0.065, <em>d</em> = 1.23) but there were no differences in other markers of lactate signaling: phosphorylated-total adenosine monophosphate activated protein kinase, and protein kinase b (<em>P</em> > 0.121, <span><math><msubsup><mi>η</mi><mi>p</mi><mn>2</mn></msubsup></math></span><0.160). Our results suggest that lactate accumulation due to exercise or peripheral injection does not alter central or peripheral appetite signaling when measured 2 h post-exercise/injection, though pSTAT3 was blunted with oxamate.</div></div>\",\"PeriodicalId\":19254,\"journal\":{\"name\":\"Neuropeptides\",\"volume\":\"108 \",\"pages\":\"Article 102473\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropeptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417924000726\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417924000726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice
Lactate has been implicated in exercise-induced appetite suppression though little work has explored the mechanisms underpinning its role. Recent work suggests lactate accumulation via exercise and intracerebroventricular injection can alter central appetite regulating pathways, though a supraphysiological dose of lactate was administered centrally and there was no assessment of peripheral appetite markers. Therefore, we examined how physiologically relevant lactate accumulation via exercise or intraperitoneal injection altered central and peripheral appetite signaling pathways and whether the lactate dehydrogenase inhibitor oxamate could blunt any exercise effect. Forty 10-week-old C57BL/6 J male mice (n = 10/group) were assigned to either: 1) sedentary (SED + SAL; saline); 2) exercise (EX+SAL; saline); 3) exercise with oxamate (EX+OX; 750 mg‧kg−1 body mass); or 4) lactate (SED + LAC; 1.0 g‧kg−1 body mass). Blood, stomach, and hypothalamus samples were collected ∼2 h post-exercise/injection. Though oxamate blunted exercise-induced lactate accumulation compared to the EX+SAL condition (P = 0.044, d = 0.73), there were no differences in circulating acylated ghrelin or stomach ghrelin O-acyltransferase content between groups (P > 0.213, <0.125). There were also no differences in hypothalamic content for neuropeptide Y, proopiomelanocortin, agouti-related peptide, and alpha melanocyte-stimulating hormone (P > 0.150, <0.170). Exercise did increase phosphorylated-total signal transducer and activator of transcription 3 (pSTAT3) compared to EX+OX (p = 0.065, d = 1.23) but there were no differences in other markers of lactate signaling: phosphorylated-total adenosine monophosphate activated protein kinase, and protein kinase b (P > 0.121, <0.160). Our results suggest that lactate accumulation due to exercise or peripheral injection does not alter central or peripheral appetite signaling when measured 2 h post-exercise/injection, though pSTAT3 was blunted with oxamate.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.