通过频率相关的声阻力模拟水凝胶中的冲击衰减

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Orel Guetta , Daniel Rittel
{"title":"通过频率相关的声阻力模拟水凝胶中的冲击衰减","authors":"Orel Guetta ,&nbsp;Daniel Rittel","doi":"10.1016/j.ijengsci.2024.104149","DOIUrl":null,"url":null,"abstract":"<div><div>A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104149"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling shock attenuation in hydrogels via frequency-dependent acoustic drag\",\"authors\":\"Orel Guetta ,&nbsp;Daniel Rittel\",\"doi\":\"10.1016/j.ijengsci.2024.104149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"205 \",\"pages\":\"Article 104149\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001332\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001332","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种将与频率有关的阻力系数纳入时域声学模拟的新方法。该方法通过与频率相关的阻力系数模型,将结构(波的传播)模拟与各个频率的声学衰减结合起来。入射压力脉冲通过实验或初步有限元模拟获得。然后将该脉冲分解成其频谱成分。利用适当的阻力系数分别模拟每个频率分量的传播。在最后阶段,将所有单频模拟的节点压力相加,重建传输的衰减压力脉冲。该方法使用先前校准过的甲基纤维素水凝胶衰减频谱模型进行演示,但也可用于可获得频率响应函数的任何其他阻尼材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling shock attenuation in hydrogels via frequency-dependent acoustic drag
A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信