{"title":"通过频率相关的声阻力模拟水凝胶中的冲击衰减","authors":"Orel Guetta , Daniel Rittel","doi":"10.1016/j.ijengsci.2024.104149","DOIUrl":null,"url":null,"abstract":"<div><div>A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104149"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling shock attenuation in hydrogels via frequency-dependent acoustic drag\",\"authors\":\"Orel Guetta , Daniel Rittel\",\"doi\":\"10.1016/j.ijengsci.2024.104149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"205 \",\"pages\":\"Article 104149\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001332\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001332","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling shock attenuation in hydrogels via frequency-dependent acoustic drag
A new method for assimilating a frequency-dependent drag coefficient into time-domain acoustic simulations is presented. The method combines structural (wave propagation) simulations together with acoustic attenuation of the individual frequencies through a model for the frequency-dependent drag coefficient. An incident pressure pulse is obtained experimentally or from a preliminary finite element simulation. This pulse is then decomposed into its spectral components. The propagation of each frequency component is simulated separately with the appropriate drag coefficient. In the final stage, the nodal pressure for all single frequency simulations are summed to reconstruct the transmitted attenuated pressure pulse. This method is demonstrated using a previously calibrated spectral model of the attenuation of methyl cellulose hydrogel, but it can be used for any other damping material for which a frequency response function can be obtained.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.