{"title":"在湍流和肌肉抽搐波动以及声带震颤的情况下,起搏器控制声带双质量模型混乱振荡的稳健性","authors":"Oriol Guasch","doi":"10.1016/j.cnsns.2024.108361","DOIUrl":null,"url":null,"abstract":"<div><div>A pacemaker for phonation could be feasible in the near future thanks to advances in smart materials technology. However, before attempting it, much theoretical work needs to be done to figure out how it could work. Human phonation is a complex and highly non-linear fluid–structure interaction process for the onset of regular self-oscillations of the vocal folds to produce voice. Such oscillations can become chaotic for even moderate changes in the physical parameters of the folds or the subglottal pressure. Traditionally, low-dimensional biomechanical mass models have been used to understand the intricacies of both normal and abnormal phonation. In this framework, the possibility of devising a mass–spring–damper pacemaker capable of regulating chaotic oscillations of the vocal folds, which uses an altering energy feedback control strategy acting on the pacemaker damping, was recently analyzed. However, phonation can undergo several perturbations and it is necessary to test the robustness of the pacemaker against them. This is the objective of this work. Two types of disturbances are considered: random and periodic. The former are associated with glottal flow turbulence and also with muscle twitches, which are partially responsible for voice jitter. The second are related to vocal tremor and are often found in patients with paresis, Parkinson’s disease or adductor spasmodic dysphonia, among others. Using tools for the analysis of nonlinear dynamical systems, it will be demonstrated that the pacemaker can respond quite well to random and periodic perturbations, supporting its potential for partial remedy of voice pathologies.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of a pacemaker to control chaotic oscillations in a two-mass model of the vocal folds under turbulence and muscle twitch fluctuations and vocal tremor\",\"authors\":\"Oriol Guasch\",\"doi\":\"10.1016/j.cnsns.2024.108361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A pacemaker for phonation could be feasible in the near future thanks to advances in smart materials technology. However, before attempting it, much theoretical work needs to be done to figure out how it could work. Human phonation is a complex and highly non-linear fluid–structure interaction process for the onset of regular self-oscillations of the vocal folds to produce voice. Such oscillations can become chaotic for even moderate changes in the physical parameters of the folds or the subglottal pressure. Traditionally, low-dimensional biomechanical mass models have been used to understand the intricacies of both normal and abnormal phonation. In this framework, the possibility of devising a mass–spring–damper pacemaker capable of regulating chaotic oscillations of the vocal folds, which uses an altering energy feedback control strategy acting on the pacemaker damping, was recently analyzed. However, phonation can undergo several perturbations and it is necessary to test the robustness of the pacemaker against them. This is the objective of this work. Two types of disturbances are considered: random and periodic. The former are associated with glottal flow turbulence and also with muscle twitches, which are partially responsible for voice jitter. The second are related to vocal tremor and are often found in patients with paresis, Parkinson’s disease or adductor spasmodic dysphonia, among others. Using tools for the analysis of nonlinear dynamical systems, it will be demonstrated that the pacemaker can respond quite well to random and periodic perturbations, supporting its potential for partial remedy of voice pathologies.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400546X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400546X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Robustness of a pacemaker to control chaotic oscillations in a two-mass model of the vocal folds under turbulence and muscle twitch fluctuations and vocal tremor
A pacemaker for phonation could be feasible in the near future thanks to advances in smart materials technology. However, before attempting it, much theoretical work needs to be done to figure out how it could work. Human phonation is a complex and highly non-linear fluid–structure interaction process for the onset of regular self-oscillations of the vocal folds to produce voice. Such oscillations can become chaotic for even moderate changes in the physical parameters of the folds or the subglottal pressure. Traditionally, low-dimensional biomechanical mass models have been used to understand the intricacies of both normal and abnormal phonation. In this framework, the possibility of devising a mass–spring–damper pacemaker capable of regulating chaotic oscillations of the vocal folds, which uses an altering energy feedback control strategy acting on the pacemaker damping, was recently analyzed. However, phonation can undergo several perturbations and it is necessary to test the robustness of the pacemaker against them. This is the objective of this work. Two types of disturbances are considered: random and periodic. The former are associated with glottal flow turbulence and also with muscle twitches, which are partially responsible for voice jitter. The second are related to vocal tremor and are often found in patients with paresis, Parkinson’s disease or adductor spasmodic dysphonia, among others. Using tools for the analysis of nonlinear dynamical systems, it will be demonstrated that the pacemaker can respond quite well to random and periodic perturbations, supporting its potential for partial remedy of voice pathologies.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.