利用相控阵 MEMS 可调光栅耦合器实现二维光束转向

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jishnu K.N. , Viswas Sadasivan
{"title":"利用相控阵 MEMS 可调光栅耦合器实现二维光束转向","authors":"Jishnu K.N. ,&nbsp;Viswas Sadasivan","doi":"10.1016/j.sna.2024.115915","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes a two-dimensional (2D) optical beam steering system using a one-dimensional (1D) optical phased array of 1D micro-electromechanical systems (MEMS) tunable grating couplers. Tuning the incremental phase difference β between the elements of an optical phased array is used to steer the beam in one direction (say, transverse). At the same time, the MEMS tuning of the individual grating couplers steers the beam in the perpendicular direction (longitudinal). A beam steering of ∼35° could be demonstrated along the transverse direction by varying <em>β</em> from −70° to 70°. The beam steering was ∼19° along the longitudinal direction by applying a potential difference of ∼ 1.6 volts to the MEMS tunable grating couplers. The beam width of the device with a mechanically and optically designed aperture of 100 μm × 100 μm is ∼ 1.75° × 0.82°. The beam width further reduces to ∼ 0.15° × 0.5° when the aperture increases to 1 mm × 0.2 mm. The 100 μm × 100 μm aperture supports a beam steering frequency of up to ∼ 50 kHz, comparable to the available state-of-the-art devices using other technologies like wavelength tuning (WT) and 2D phased arrays. The maximum voltage required by this MEMS is only around 1.6 volts, resulting in simple circuitry and low power consumption.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D beam steering using phased array of MEMS tunable grating couplers\",\"authors\":\"Jishnu K.N. ,&nbsp;Viswas Sadasivan\",\"doi\":\"10.1016/j.sna.2024.115915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper describes a two-dimensional (2D) optical beam steering system using a one-dimensional (1D) optical phased array of 1D micro-electromechanical systems (MEMS) tunable grating couplers. Tuning the incremental phase difference β between the elements of an optical phased array is used to steer the beam in one direction (say, transverse). At the same time, the MEMS tuning of the individual grating couplers steers the beam in the perpendicular direction (longitudinal). A beam steering of ∼35° could be demonstrated along the transverse direction by varying <em>β</em> from −70° to 70°. The beam steering was ∼19° along the longitudinal direction by applying a potential difference of ∼ 1.6 volts to the MEMS tunable grating couplers. The beam width of the device with a mechanically and optically designed aperture of 100 μm × 100 μm is ∼ 1.75° × 0.82°. The beam width further reduces to ∼ 0.15° × 0.5° when the aperture increases to 1 mm × 0.2 mm. The 100 μm × 100 μm aperture supports a beam steering frequency of up to ∼ 50 kHz, comparable to the available state-of-the-art devices using other technologies like wavelength tuning (WT) and 2D phased arrays. The maximum voltage required by this MEMS is only around 1.6 volts, resulting in simple circuitry and low power consumption.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009099\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009099","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种二维(2D)光束转向系统,该系统使用由一维(1D)微机电系统(MEMS)可调光栅耦合器组成的一维(1D)光学相控阵。调谐光学相控阵元件之间的增量相位差 β 可用于将光束转向一个方向(例如横向)。与此同时,对单个光栅耦合器进行微机电系统调谐可将光束转向垂直方向(纵向)。通过将 β 从 -70° 变为 70°,可在横向方向上实现 ∼35° 的光束转向。通过对 MEMS 可调光栅耦合器施加 1.6 伏的电位差,光束沿纵向方向的转向为 19°。该装置的光束宽度为 1.75° × 0.82°,其机械和光学设计孔径为 100 μm × 100 μm。当孔径增大到 1 mm × 0.2 mm 时,光束宽度进一步减小到 ∼ 0.15° × 0.5°。100 μm × 100 μm 的孔径支持高达 ∼ 50 kHz 的光束转向频率,与采用其他技术(如波长调谐(WT)和二维相控阵)的现有先进设备相当。这种微机电系统所需的最大电压仅为 1.6 伏左右,因此电路简单,功耗低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

2D beam steering using phased array of MEMS tunable grating couplers

2D beam steering using phased array of MEMS tunable grating couplers
This paper describes a two-dimensional (2D) optical beam steering system using a one-dimensional (1D) optical phased array of 1D micro-electromechanical systems (MEMS) tunable grating couplers. Tuning the incremental phase difference β between the elements of an optical phased array is used to steer the beam in one direction (say, transverse). At the same time, the MEMS tuning of the individual grating couplers steers the beam in the perpendicular direction (longitudinal). A beam steering of ∼35° could be demonstrated along the transverse direction by varying β from −70° to 70°. The beam steering was ∼19° along the longitudinal direction by applying a potential difference of ∼ 1.6 volts to the MEMS tunable grating couplers. The beam width of the device with a mechanically and optically designed aperture of 100 μm × 100 μm is ∼ 1.75° × 0.82°. The beam width further reduces to ∼ 0.15° × 0.5° when the aperture increases to 1 mm × 0.2 mm. The 100 μm × 100 μm aperture supports a beam steering frequency of up to ∼ 50 kHz, comparable to the available state-of-the-art devices using other technologies like wavelength tuning (WT) and 2D phased arrays. The maximum voltage required by this MEMS is only around 1.6 volts, resulting in simple circuitry and low power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信